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Adversarial Multi-Agent Setting
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Adversarial Multi-Agent Setting
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Adversarial Policies
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Can we perform a physical adversarial
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[Gleave et al., 2020]
See also [Guo et al., 2021]



Adversarial Policies

Test-time attack

1. Training Victim (self-play) 2. Train Adversary (fixed ng)

DNN policy



Normal

Adversarial

Adversarial Policies

100

<
%]
= 50
=
=
=
0
0.0 0.5 1.0
Timestep
= Adversary (Adv) —:— Normal (Zoo) ---- Random (Rand)

Adversary trained with
< 3% or time-steps used
for training Victim.

Masking adversary’s
position helps: the victim’s
win rate increases.
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Backdoor Attacks
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Backdoor Attacks
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Backdoor Attacks

Victim’s winning rate reduces by 17%-37% when the backdoor is triggered

Environment Triggered Not Triggered Benign Baseline
Failing Tie Winning | Failing Tie Winning | Failing Tie Winning
Run To Goal (Ants) 73.8% | 2.4% 23.8% 45.0% | 5.1% 499% | 46.0% | 3.0% 51.0%
Run To Goal (Humans) 20.8% | 69.3% 9.9% 522% | 0.7% 47.1% 512% | 1.4% 47.4%
You Shall Not Pass (Humans) | 83.0% | 0.0% 17.0% 50.1% | 0.0% 49.9% 50.5% | 0.0% 49.5%
Sumo (Humans) 344% | 54.7% | 10.9% 29.7% | 42.2% | 28.1% 30.1% | 34.4% | 35.5%

Table 2: The failing/tie/winning rate of the victim agent when the backdoor is triggered (or not). Benign baselines are measured on two
normal agents.

Fine tuning defense not fully successful

Environment/Failing Rate | BACKDOORL | Fine-tuned
Run to Goal (Ants) 23.8% 39.0%
Run to Goal (Humans) 9.9% 5.0%
You Shall Not Pass 17.0% 23.8%
Sumo 10.9% 22.5%

Table 6: Winning rate before/after fine-tuning when facing the trig-
ger. Bolded numbers are the higher winning rates.

[Wang et al., 2021] 13



Adversarial Multi-Agent Setting
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Reward Poisoning Attacks
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Reward Poisoning Attacks

e Offline finite-horizon setting:
— Attacker: Modifies the rewards in a given dataset
— Agents/Learners: Estimate the parameters of Markov game from the poisoned data

* Q-confidence bound backward induction — minimize cost C(r, 1y) while satisfying
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— Exponential in #Agents — Greedy backward-induction

[Wu et al., 2022] 16



* MARL as a framework for physical adversarial attacks

* Attacks and defense in MARL largely unexplored

* Byzantine Attacks in Distributed RL

— Fault-tolerant Federated RL [Fanetal, 2021] 8 81 &
\ )
— Byzantine-Robust Distributed RL  [Chenetal., 2022] & "

Center
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Attacks/Defenses
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