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Adversarial Multi-Agent Setting
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Adversarial Multi-Agent Setting
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Adversarial Policies
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[Gleave et al., 2020]
See also [Guo et al., 2021]

!"# = −!"

Can we perform a physical adversarial 
attacks using %.?



Adversarial Policies
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Adversarial Policies
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Adversary trained with 
< 3% or time-steps used 

for training Victim.

[Gleave et al., 2020]

Masking adversary’s 
position helps: the victim’s 

win rate increases.



Backdoor Attacks
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Inject a backdoor that can be triggered by %.
[Wang et al., 2021]



Backdoor Attacks
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Backdoor Attacks
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Victim’s winning rate reduces by 17%-37% when the backdoor is triggered

Fine tuning defense not fully successful
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Reward Poisoning Attacks
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Force a joint target policy +3: 
Minimally change %4 s.t. +3 is  an 5-strict Markov perfect 

dominant strategy equilibrium

[Wu et al., 2022]



Reward Poisoning Attacks
• Offline finite-horizon setting: 

– Attacker: Modifies the rewards in a given dataset
– Agents/Learners: Estimate the parameters of Markov game from the poisoned data

• Q-confidence bound backward induction – minimize cost !(#, #%) while satisfying

– Exponential in #Agents → Greedy backward-induction
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(),*(+, (,-),* + , ./))) ≥ (),*(+, (.), ./))) + 2

[Wu et al., 2022]

Equilibrium 
condition



Summary
• MARL as a framework for physical adversarial attacks 

• Attacks and defense in MARL largely unexplored

• Byzantine Attacks in Distributed RL
– Fault-tolerant Federated RL
– Byzantine-Robust Distributed RL
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Center

[Chen et al., 2022]

[Fan et al., 2021]
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