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Overview

• Introduction: robust supervised learning (linear regression) 

• Robustness in offline RL [ZCZS 2021b] 

• Robustness in online RL [ZCZS 2021a] 

• Experiments
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Robust Linear regression

Given a clean dataset , where ,     

, with  being sub-gaussian and 

D̃ = (xi, yi)N
i=1 x ∼ ν ∥x∥ ≤ 1,

y = x⊤w⋆ + δ δ 𝔼[δ] = 0,𝔼[δ2] ≤ γ2

Adversary can arbitrarily corrupt  many pairs from ϵN D̃

Then, there exists robust linear regression algorithm that returns an estimator , s.t., ŵ

𝔼x∼ν(x⊤(w⋆ − ŵ))2 ≤ c ( γ2poly(d)
N

+ γ2ϵ)



Is statistically robust RL possible?
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Markov Decision Process (MDP)

An MDP  is defined by the following elements: 

• the state space . 

• the action space . 

• the reward function . 

• the transition function . 

• the initial state distribution . 

• the discounting factor .

𝑀 = (𝑆, 𝐴, 𝑅, 𝑃, 𝜇0, 𝛾)
𝑆
𝐴

𝑅 :𝑆 × 𝐴 → Δℝ

𝑃 :𝑆 × 𝐴 → Δ𝑆

𝜇0 ∈ Δ𝑆

γ ∈ [0,1)
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Policy and Value

• A (stochastic) policy  specify a strategy of choosing the action based on 
the current state, i.e. . 

• The value function w.r.t. a policy  is defined as” 

 

• The Q function w.r.t. a policy  is defined as: 

 

• The advantage function is defined as:  

𝜋 :𝑆 → Δ𝐴
𝑎𝑡 ∼ 𝜋(𝑠𝑡)

𝜋

𝑉 𝜋(𝑠) = 𝔼[
∞

∑
𝑡=1

𝛾𝑡−1𝑟𝑡│ 𝜋,   𝑠1 = 𝑠]
𝜋

𝑄𝜋(𝑠, 𝑎) = 𝔼[
∞

∑
𝑡=1

𝛾𝑡−1𝑟𝑡│ 𝜋,   𝑠1 = 𝑠,  𝑎1 = 𝑎]
𝐴𝜋(𝑠, 𝑎) = 𝑄𝜋(𝑠, 𝑎)− 𝑉 𝜋(𝑠)
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Optimal Policy Identification (OPI)

• The objective of RL is to learn a policy that maximize the expected 
discounted sum of reward: 

 

• The optimal policy is defined as  

• The learning goal is to find a -optimal policy , i.e.  

.

𝐽(𝜋) = 𝔼𝑠∼𝜇0[𝑉 𝜋(𝑠)] 

𝜋∗ =  argmax𝜋 𝐽(𝜋) .

𝜖 �̂�

𝐽(𝜋∗) − 𝐽(�̂�) ≤ 𝜖
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The -Contamination model in Offline RL𝜖

1. A clean dataset  of size :  

2. An adversary replace an  fraction of  with arbitrary transitions 
. 

3. The learner observes the contaminated dataset and try to find a 
-optimal policy.

𝐷 ∼ 𝜇(𝑠, 𝑎) 𝑇 {(𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠′ 𝑡)}𝑡=1:𝑇

𝜖 𝐷
(𝑠, 𝑎, 𝑟, 𝑠′ ) ∈ 𝑆 × 𝐴 × ℝ × 𝑆

𝑝𝑜𝑙𝑦(𝜖)
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Assumptions
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Assumption 1 (Tabular MDP and Exploratory Behavior Policy):  

• We assume that both state and action spaces are finite, with size  and  
respectively.  

• We also assume that the dataset  is collected by an exploratory behavior 
policy, such that each  is visited with some non-zero probability . 

𝑆 𝐴

𝐷
(𝑠, 𝑎) 𝑝(𝑠, 𝑎)



Finding 1: the statistical limit of 
robustness in offline RL.
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Impossibility Result

Theorem 1. For any given  and exploratory data distribution 
, under -contamination, no offline RL algorithm can find a better than 
-optimal policy with probability more than 1/2 on all MDPs.

𝜖 ∈ (0, 2/𝑆𝐴]
𝑝(𝑠, 𝑎) 𝜖
𝑆𝐴𝜖/2
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Key Idea: 
• A sparse reward structure: only  has positive reward Bernoulli . 

• There exists an  pair has at most  data points. 

• The attacker can concentrate on , and flip the reward to 1 on  data points of 
  

• Then,  will look as good as Bernoulli .

(𝑠∗, 𝑎∗)  (𝑆𝐴𝜖/2)

(𝑠, 𝑎)
𝑇

𝑆𝐴
(𝑠, 𝑎)  𝜖𝑇

(𝑠, 𝑎) .
(𝑠, 𝑎) (𝑆𝐴𝜖)



Interpretation of the result

• Unlike high-dimensional robust statistics, here our optimality gap has 
an  dependence 

• Thus robustness of offline rl is not possible for high-dimensional 
setting, i.e., large-scale MDPs. 

SA
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Any remedy?

• Q: Can we avoid an explicit SA scaling, i.e., achieve dimension-

independent optimality gap? 

• A: On-policy policy gradient!
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The -Contamination model in Online RL𝜖

1. At any timestep , the adversary observes  and decides whether to 
supersede the environment to provide any  and . 

2. The adversary cannot contaminate in more than  episodes,  being the 
total number of interaction episodes.

𝑡 (𝑠𝑡, 𝑎𝑡)
𝑟†

𝑡 ∈ ℝ 𝑠†
𝑡+1 ∈ 𝑆

𝜖𝐾 𝐾
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Remarks:  
• Strictly stronger than the adversary model in existing online learning literatures.



The classic Policy Gradient Algorithms

• Policy Gradient [Williams 1992]: 
1. Denote  

.

1. Policy gradient:  

.

𝑑𝜋
𝜈 (𝑠) = (1 − 𝛾)

∞

∑
𝑡=1

𝛾𝑡−1𝑃𝑟𝜋(𝑠𝑡 = 𝑠   𝑠0 ∼ 𝜈)

∇𝜃𝐽(𝜋𝜃) =
1

1 − 𝛾
𝔼𝑠∼𝑑𝜋𝜃

𝜇0
𝔼𝑎∼𝜋𝜃(𝑠)[∇𝜃log𝜋𝜃(𝑎 𝑠)𝐴𝜋𝜃(𝑠, 𝑎)]
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The classic Policy Gradient Algorithms

• Natural Policy Gradient (NPG) [Kakade, 2001]: 
1. Fisher Information Matrix: 

 

2. Gradient ascent: .

𝐹(𝜃) = 𝔼𝑠∼𝑑𝜋𝜃
𝜇0

𝔼𝑎∼𝜋𝜃(𝑠)[∇𝜃log𝜋𝜃(𝑎 𝑠)(∇𝜃log𝜋𝜃(𝑎 𝑠))⊤]
𝜃(𝑡+1) = 𝜃(𝑡) + 𝜂𝐹(𝜃(𝑡))−1 ∇𝜃𝐽(𝜋𝜃)
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w := arg min
w

𝔼s,a∼dπθ
μ0

(w⊤ ∇ln πθ(a |s) − Aπθ(s, a))2

Least square from feature  to ϕ(s, a) := ∇ln πθ(a |s) Aπθ(s, a)



Sample-based Filtered NPG (FPG)

• In each iteration t,  

1. run  to collect a dataset  where .  

2. Solve the  robust linear regression problem: 

 

3. Policy gradient update: 

 

𝜋(𝑡) (𝑠𝑖, 𝑎𝑖, �̂�(𝑠𝑖, 𝑎𝑖))𝑖=1:𝑀
(𝑠𝑖, 𝑎𝑖) ∼ 𝑑𝜋(𝑡)

𝜈

w(t) = Robust LS((s, a, ̂A)i=1:M, ϕ(s, a) := ∇ln πθt(a |s))

𝜃(𝑡+1) = 𝜃(𝑡) + 𝜂 𝑤(𝑡)
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Possibly corrupted by adversary already!



Robustness of FPG

Assumption 1 (Linear Advantage Function): We assume that there exists a feature map , 
such that for any , we have 

, for some . 

We assume in addition that, for all , ,  and . 

𝜙:𝑆 × 𝐴 → ℝ𝑑

(𝑠, 𝑎, 𝜋)

𝐴𝜋(𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤𝑤𝜋 𝑤𝜋 ∈ ℝ𝑑

(𝑠, 𝑎) 𝔼[𝑟(𝑠, 𝑎)] ∈ [0,1] 𝕍𝑎𝑟[𝑟(𝑠, 𝑎)] ≤ 𝜎2 𝜙(𝑠, 𝑎) ≤ 1
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Remarks:  
1. Assumption 1 is satisfied in, for example, tabular MDPs and linear MDP.



Robustness of FPG

Assumption 2 (Exploratory Reset Distribution [Agarwal et al. ’20a]): With respect to any state-action 
distribution , define 

 
and define the relative condition number as 

, where 

We assume that  is finite and small w.r.t. a reset distribution  available to the algorithm.

𝜈
Σ𝜈 = 𝔼𝑠,𝑎∼𝜈[𝜙𝑠,𝑎𝜙⊤

𝑠,𝑎]

sup
𝑤∈ℝ𝑑

𝑤⊤Σ𝑑∗𝑤
𝑤⊤Σ𝜈𝑤

= 𝜅 𝑑∗(𝑠, 𝑎) = 𝑑𝜋∗

𝜇0
(𝑠, 𝑎).

𝜅 𝜈

Remarks:  
1. An assumption that alleviate the challenge of exploration.  
2. We will use the reset distribution  as our initial distribution ν μ0
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Finding 2: online RL can be robust.
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Robustness of FPG

Theorem 2. Under assumptions 1,2, and under -contamination there exists a set of 

hyperparameters agnostic to , such that FPG with  sample complexity 

returns a policy  such that 

𝜖

𝜖 poly(𝑑,
1
𝜖

,
1

1 − 𝛾
)

�̂�

Remarks:  
•  can be as small as 1 for a good reset distribution (e.g.,  is an expert demonstration 

distribution).
𝜅 ν
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𝔼[𝐽(𝜋∗) − 𝐽(�̂�)] ≤ ~𝑂
𝜅

(1 − 𝛾)5 𝜖1/4 .



Proof of Theorem 2
Lemma 1 (NPG Regret Lemma [Even-Dar et al. ’09, Agarwal et al. ’20]). Under assumptions 1,2, assume that 

 is the uniform policy and the iterates  satisfies 

 

Then, NPG satisfies 

𝜋0 𝑤(𝑡)

𝔼[𝔼𝑠,𝑎∼𝑑(𝑡) [(𝑄𝜋(𝑡)(𝑠, 𝑎) − 𝜙(𝑠, 𝑎)⊤𝑤(𝑡))
2]] ≤ 𝜖(𝑡)

𝑠𝑡𝑎𝑡

𝔼[ 1
𝑇

𝑇

∑
𝑡=1

(𝐽(𝜋∗) − 𝐽(𝜋(𝑡)))] ≤
𝑊

1 − 𝛾

2log 𝐴

𝑇
+

1
𝑇

𝑇

∑
𝑡=1

4𝜅𝜖(𝑡)
𝑠𝑡𝑎𝑡

(1 − 𝛾)3 
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Proof of Theorem 2
Lemma 2 (Robust linear regression under adaptive -contamination). For a given iteration , suppose the adversary 
corrupt this iteration with contamination level , then with  large enough it is guaranteed that with high probability, 

𝝐 𝑡
𝜖(𝑡) 𝑀

𝔼𝑠,𝑎∼𝑑(𝑡) [(𝑄𝜋(𝑡)(𝑠, 𝑎) − 𝜙(𝑠, 𝑎)⊤𝑤(𝑡))
2] ≤ 𝑂

𝜖(𝑡)

(1 − 𝛾)2
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•
Importantly, note that . 

• The result follows by plugging Lemma 2 into Lemma 1 and apply Cauchy–Schwarz: 

1
T

𝑇

∑
𝑡=1

𝜖(𝑡) = 𝜖

1
𝑇

𝑇

∑
𝑡=1

(𝜖(𝑡))1/4 ≤
1
𝑇

𝑇

∑
𝑡=1

𝜖1/4 = 𝜖1/4



Lower bound
Theorem 3. For any algorithm, there exists an MDP such that the algorithm fails to find an 

-optimal policy under ε-contamination with probability at least 1/2. 𝑂( 𝜖
2(1 − 𝛾) )

• Key idea: an adaptive ε-contamination adversary can with large probability “mimic” a 

different MDP , and no policy is more than -optimal in both  and 

. 

𝑀′ 𝑂(
𝜖

2(1 − 𝛾)
) 𝑀

𝑀′ 



Summary of Theoretical Results

• Under adaptive 𝜖-contamination, 

1. Offline RL suffer a worst-case  optimality gap. 

2. FPG can find an -optimal policy. 

3. No algorithm can find better than -optimal policy.

𝑂(𝑆𝐴𝜖)

𝑂(𝜖1/4)

𝑂(𝜖)
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RL in time-varying MDP

• Several lines of related work: 
1. Adversarial MDPs: stochastic transition , adversarial reward . 

 regret can be achieved.  
         [Even-Dar et al. ’09, Neu et al. ’10, ’12, ’13, ’20, Rosenberg and Mansour ’19, Jin et al. ’20, Lee et al. ’20, …] 

• Impossibility result: sublinear regret impossible when both transition and 
reward are adversarial at the same time. [Yadkori et al., 2013]

𝑃 𝑅𝑘

𝑂( 𝑇 )
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RL in time-varying MDP

• Several lines of related work: 
2. Online/non-stationary MDPs: the MDP slowly changes over time 

with total variation .  regret can be 
achieved.  

         [Cheung et al. ’19, Ornik and Topcu ’19, Ortner et al. ’19, Domingues et al. ’20, …] 

• Regret bound blows up when the .

Δ 𝑂(𝑝𝑜𝑙𝑦(𝑆, 𝐴)𝛥𝑐𝑇1−𝑐)

Δ = 𝜖𝑇
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RL in time-varying MDP

• Several lines of related work: 
3. Corruption-robust RL [Lykouris et al., 2019]: at most C episodes are 

adversarial.  

• finds -optimal policy in tabular MDPs and 

 in linear MDPs. 

• the bound blows up when .

𝑂(𝑝𝑜𝑙𝑦(𝑆, 𝐴)𝐶/ 𝑇 )
𝑂(𝑝𝑜𝑙𝑦(𝑑)𝐶2/ 𝑇 )

𝐶 = 𝜖𝑇
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RL in time-varying MDP

• Highlights of our work compared to existing works: 

1. We handles both adversarial reward and adversarial transitions. 

2. We are the first to provide meaningful guarantees when the amount of change is 
linear in T. 

3. Our algorithm FPG also performs well in practice (to be seen).
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• Introduction 
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Finding 3: FPG is also robust in practice.

33



MuJoCo Continuous Control Benchmarks

Swimmer Hopper Half-Cheetah

Walker Ant Humanoid



Attack Strategy

• Policy Gradient Methods:  

• Goal: Perturb  to point in the  direction. 

• Simple strategy: flip the rewards and multiply by 
a big constant! 

• -attack: Among the  episodes in each PG 
iteration, perturb the reward to be  in 

 episodes.

𝜃(𝑡+1) = 𝜃(𝑡) + 𝑔(𝑡)

�̂�(𝑡) −𝑔(𝑡)

(𝜖, 𝛿) 𝑀
𝑟′ 𝑡 = − 𝛿𝑟𝑡

𝜖𝑀
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-attack(0.01, 100)



FPG
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TRPO



Happy Cheetah!
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