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Target Policy
• Deterministic policy 


• Target policy  (the optimal policy for the underlying MDP)


• [Definition] Training time RL attack:


• Manipulate RL agent’s learning experience


• … so the RL agent learns 


• … optionally minimize manipulation magnitude.

π : S → A

π† ≠ π*

π†
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Reduction to Supervised Learning

• Training set poisoning in supervised learning:


• Manipulating training set 


• … so a supervised learner adopts predictor 


• For example, set 


• Same attack? 

(x, y)1:n

f † : X ↦ Y

yi = f †(xi), ∀i ∈ [n]

X → S, Y → A, f → π
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Behavior Cloning
• Works on behavior cloning agent! 


• Input: 


• Behavior cloning: 


• Attack: set 


• But: most RL agents do no work like this.

s0, a0, s1, a1, …

̂π = arg max
π∈Π

n

∑
i=1

log π(ai ∣ si)

a†
i = π†(si), ∀i
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General Training Time Attack Protocol

• Environment draws initial state , agent perceives 


• For 


• Agent chooses action 


• Environment receives , generates 


• Agent perceives 

s0 ∼ μ s†
0

t = 0,1,…

at

a†
t rt, st+1

r†
t , s†

t+1
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“Targeted vs. Non-Targeted”
• Targeted attack: force a specific 


• Non-targeted attack: make agent suffer in value 


• Conceptually still targeted: 


• Heuristic “flipping reward” attack 


• This is 


• Optionally with early stopping

π†

V ̂π(μ)

π† ∈ Π := {π : Vπ(μ) ≤ c}

r†
t := − rt

π† ∈ arg min
π∈Π

Vπ(μ)
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Outline
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Open-Loop Control
• Attacker knows:


• The environment MDP 


• Agent runs any reasonable RL algorithm


• Open-loop control: 


• not interested in agent’s internal state (e.g. Q-table )


• Instead, simulate another MDP  such that  is the 
optimal policy under 


• Trust agent will eventually learn 

M = (S, A, R, P, μ, γ or H)

Qt

M† = (S, A, R†, P, μ, γ or H) π†

M†

π†

10



Target Policy Uniqueness

•  is an optimal policy of  iff 


• An MDP can have multiple optimal policies; Attacker wants to ensure  
being learned


•  has to be the unique optimal policy of .  


• Sufficient condition ( -robust policy) for uniqueness: Fix ,

π M† Aπ
M†(s, a) := Qπ

M†(s, a) − Vπ
M†(s) ≤ 0,∀s, a

π†

π† M†

ϵ ϵ > 0
Aπ†

M†(s, a) ≤ − ϵ, ∀s, ∀a ≠ π†(s)
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Reward Poisoning: r†

• Turns out any target policy is feasible with attack, if:


• Reward manipulate is unbounded ; and


• Reward is a function of , not just 

π†

r† ∈ ℝ

(s, a) s
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Bĳection between  and R Q*

• [Theorem (discounted MDP)] The following is a bijection 


• The unique fixed point of 


•

ℝSA ↔ ℝSA

𝒯Q(s, a) = R(s, a) + γ𝔼s′ ∼Psa
max

a′ 

Q(s′ , a′ )

R(s, a) = Q(s, a) − γ𝔼s′ ∼Psa
max

a′ 

Q(s′ , a′ )
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Any Target Policy  is Feasibleπ†

• Manually pick any  that satisfies , e.g.


•  


•  for all other actions 


• Calculate 

Q† Aπ†

M†(s, a) ≤ − ϵ, ∀s, ∀a ≠ π†(s)

Q†(s, π†(s)) = ϵ, ∀s

Q†(s, a) = 0 a

r†(s, a) = Q†(s, a) − γ𝔼s′ ∼Psa
max

a′ 

Q†(s′ , a′ )
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Reward Poisoning Attack Protocol
• Environment draws initial state 


• For 


• Agent chooses action 


• Environment generates 


• Agent perceives  defined on previous slide, and 


s0 ∼ μ

t = 0,1,…

at

rt(st, at), st+1

r†
t (s, a) s†

t+1
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Remarks

• The MDP seen by agent is 


• Some  infeasible if rewards bounded in [0,1], or independent of 


• There are many choices of  and thus  for a given 


• Should the attacker prefer some  over others?

M† = (S, A, R†, P, μ, γ)

π† a

Q† R† π†

R†
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Attack Cost

• The environment MDP was  


• Now agent sees 


• Reasonable for the attacker to keep  close to  for stealthiness and 
less effort (i.e. attack cost)


• Close in what sense?

M = (S, A, R, P, μ, γ)

M† = (S, A, R†, P, μ, γ)

R† R
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Attack Cost 1: Uniform Occupancy

•
Popular choice: 


• Attack is a convex optimization problem:





∥R† − R∥p = ∑
s,a

(R†
sa − Rsa)p

1
p

min
R†∈ℝSA

∥R† − R∥p

s.t. Aπ†(s, a) ≤ − ϵ, ∀s, a ≠ π†(s)
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Attack Cost 1: Uniform Occupancy
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• Pros: Convenient.  Measures attack cost under a uniform state-action 
occupancy :





• Cons: after the attack succeeds, agent will follow  and keep visiting 
state-action pairs under 


• There can be states  and 


•  not appropriate if attacker cares about how often it has to attack

dunif(s, a)

𝔼dunif |R†(s, a) − R(s, a) |p

π†

dπ†

dπ†(s, π†(s)) ≫ 0 R†(s, π†(s)) ≠ R(s, π†(s))

dunif



Attack Cost 2: Do Not Attack Target Actions
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• A variant of uniform occupancy, but do not attack on target actions


• Still convex optimization











• [Theorem] Attack with solution above, then both  and 

 are .

min
R†∈ℝSA

∥R† − R∥p

s.t. Aπ†(s, a) ≤ − ϵ, ∀s, a ≠ π†(s)

R†(s, π†(s)) = R(s, π†(s)), ∀s

𝔼 [ 1
T ∑

t

|R†(st, at) − R(st, at) |]
𝔼 [ 1

T ∑
t

1[at ≠ π†(st)]] Õ ( 1
T )

[RRDZS]



Attack Cost 3:  Occupancydπ†
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• Directly minimize cumulative manipulation under :





π†

min
R†∈ℝSA

𝔼dπ† |R†(s, a) − R(s, a) |

s.t. Aπ†(s, a) ≤ − ϵ, ∀s, a ≠ π†(s)

(Similar to [ZPC])



Attack Cost 3:  Occupancydπ†
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• Implement as linear program








min
R†∈ℝSA,U

Uπ†(μ)

s.t. Aπ†(s, a) ≤ − ϵ, ∀s, a ≠ π†(s)

Uπ†(s, a) = |R†(s, a) − R(s, a) | + γ𝔼s′ ∼Psa
Uπ†(s′ , π†(s′ ))

(Similar to [ZPC])



Attack Cost 4:  Behavior Occupancydπb
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• Offline RL from a dataset  generated from behavior policy 


• Attacker can modify  before learner sees the dataset


• Model based RL: learner estimate  from dataset, then planning


•  induce estimated advantage function , allowing attack


• Importantly, attacker cares about small manipulation on the dataset

(s, a, r, s′ )1:n πb

r1:n

̂P, R̂

̂P, R̂ ̂A

[MZSZ]



Attack Cost 4:  Behavior Occupancydπb
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• Dataset was drawn from , so approximately








• This assumes the attacker wants the same  value for all 
instances of the same  in the dataset


• In practice can relax this constraint and further lower attack cost

dπb

min
R†∈ℝSA

𝔼dπb |R†(s, a) − R(s, a) |

s.t.  ̂A(s, a) ≤ − ϵ, ∀s, a ≠ π†(s)

r† = R†(s, a)
(s, a)

[MZSZ]



Recap

• Attacker knows environment MDP


• Attacker can change 


• Open-loop control: just simulate another MDP with , so that  
becomes the -robust optimal policy


• The optimal  depends on which occupancy to measure attack cost

rt

R† π†

ϵ

R†
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Outline
• Poisoning: from supervised learning to RL


• Open-loop control: simulating another MDP


• With reward poisoning 


• With action poisoning 


• Closed-loop control


• Forced exploration in unknown MDP


• Backdoor RL

r†

a†
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Action Poisoning Attack Protocol
• Environment draws initial state 


• For 


• Agent chooses action 


• Attacker intercepts  and sends  to the environment instead (invisible to 
agent)


• Environment generates  based on 


• Agent receives  and thought they were based on 

s0 ∼ μ

t = 0,1,…

at

at a†
t

rt, st+1 a†
t

rt, st+1 at
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Action Poisoning Goal and Cost

• Attacker knows the environment MDP 


• Attacker wants to force target policy 


• Attack cost = how often attacker has to change  to 

M = (S, A, P, R, μ, H)

π†

at a†
t
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Action Poisoning Algorithm

• For each state , attacker computes the worst action under  and :





• Requirement on : 


• Attack algorithm: if agent  do not attack; otherwise set 

s M π†

ao(s) = arg min
a

Qπ†(s, a)

(M, π†) ∀s : π†(s) ≠ ao(s)

at = π†(st)
a†

t = ao(st)
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Action Poisoning Algorithm

• [Lemma] Agent thinks  is the optimal policy


• Define 


• [Theorem] Both and  are 

upperbounded by , where  is the regret of the RL algorithm

π†

Δmin = min
s (Vπ†(s) − min

a
Qπ†(s, a))

𝔼 [∑
t

1[at ≠ π†(st)]] 𝔼 [∑
t

1[at ≠ a†
t ]]

Reg/Δmin Reg
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Recap
• Poisoning: from supervised learning to RL


• Open-loop control: simulating another MDP


• May poison , , or transition  [RRDZS]


• Closed-loop control


• Forced exploration in unknown MDP


• Backdoor RL

r† a† s†
t+1
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Outline
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r† a† s†
t+1
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Open vs. Closed-Loop Control
• So far the attacker uses open-loop control:


• Maintain an MDP  whose unique optimal policy is 


•  is not adaptive to agent’s internal learning state (e.g. Q-table)


• Pro: applicable to any RL learner


• Con: can be slow in forcing 


• Closed-loop control: with a whitebox agent, can adapt poisoning based on 
agent internal state

M† π†

M†

π†
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Example: Fast Adaptive Attack (FAA)

• Require:  differs from  on only  states 


• For  (  is the farthest from the initial states,  nearest)


• Poison  to force navigation policy : guides agent to , and set 


• Invariance: does not change 


• This requires attacker to know agent’s Q-table  at each round

π† π k = O(log S) s1…sk

i = 1…k s1 sk

r† νi si π†(si)

π†(s1)…π†(si−1)

Qt
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Example: Fast Adaptive Attack (FAA)

• Pro: number of rounds  does not induce  is 


• Open-loop control can be 


• Cons:


• Requires whitebox agent


• The attacks  as seen from the agent are non-stationary; perhaps 
easier to detect

Qt π† O(poly(S))

O(eS)

r†
t

35
[ZMSZ]



Outline
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r† a† s†
t+1
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The Issue with Unknown MDP

• Everything up to now (open/closed-loop, attack ) requires the 
attacker to know the environment MDP 


• If attacker does not know  it cannot compute , and thus cannot form 
targeted attacks


• But that is the case in many applications

r, a, st+1
M

M Aπ†
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Forced Exploration
• Key idea: 


• First attack to force agent to heavily explore 


• [RZZS] uses 


• [LL] uses LCB on Q values


• By observing agent, attacker builds a set  of plausible MDPs


• Design attack so that  is the optimal policy in all 

M

r†
t ∼ Bernoulli(1/2,1/2)

ℳ

π† M ∈ ℳ
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Outline
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r† a† s†
t+1

39



Backdoor RL

• Backdoor RL has two phases:


• Training-time poisoning phase to hide a backdoor in 


• Test-time triggering phase to activate the backdoor in 

π†

π†
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Training-Time Poisoning Phase
• Use any of the techniques discussed so far


• May even be easier: usually does not care about attack cost


• The target policy  is special: 


•   [normal operation]


•  on “trigger states”  


• e.g. ”hard accelerate” leading to crash


•  can be difficult to distinguish from  by humans

π†

π†(s) = π*(s)∀s ∈ supp(dπ*)

Vπ†(s†) ≪ V*(μ) s† ∈ Tr

a† = π†(s† has sticker in scene) =

Tr supp(dπ*)

41

supp(dπ*)

Tr

S



Test-Time Triggering Phase
• Agent deploys 


• Before triggering, by definition any  is a normal state


• The attacker has the ability to change  to 


• E.g. by adding a special sticker to the scene


• E.g. by controlling other agents to perform unusually actions


• From here on agent receives low value 

π†

st ∈ supp(dπ*)

st s†
t ∈ Tr

Vπ†(s†) ≪ V*(μ)
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What We Covered
• Poisoning: from supervised learning to RL


• Open-loop control: simulating another MDP


• May poison , , or transition  


• Closed-loop control


• Forced exploration in unknown MDP


• Backdoor RL

r† a† s†
t+1
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Looking Ahead

• Commonalities of training-time RL attacks:


• Require “enough” manipulation


• Assume agent naively runs standard RL algorithms


• Therefore, we anticipate RL defense to break these conditions.
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