Adversarial Sequential Decision Making

Part 2: Training Time Attacks

Outline

- Poisoning: from supervised learning to RL
- Open-loop control: simulating another MDP
- Closed-loop control
- Forced exploration in unknown MDP
- **Backdoor RL**

Outline

- Poisoning: from supervised learning to RL
- Open-loop control: simulating another MDP
- Closed-loop control
- Forced exploration in unknown MDP
- Backdoor RL

З

Target Policy

- Deterministic policy $\pi: S \to A$
- Target policy $\pi^{\dagger} \neq \pi^{*}$ (the optimal policy for the underlying MDP)
- [Definition] Training time RL attack:
 - Manipulate RL agent's learning experience
 - ... so the RL agent learns π^{\dagger}
 - ... optionally minimize manipulation magnitude.

Reduction to Supervised Learning

- Training set poisoning in supervised learning:
 - Manipulating training set $(x, y)_{1:n}$
 - ... so a supervised learner adopts predictor $f^{\dagger}: X \mapsto Y$
 - For example, set $y_i = f^{\dagger}(x_i), \forall i \in [n]$
- Same attack? $X \to S, Y \to A, f \to \pi$

Behavior Cloning

• Works on behavior cloning agent!

• Input:
$$s_0, a_0, s_1, a_1, \ldots$$

Behavior cloning: $\hat{\pi} = \arg \max_{\pi \in \Pi} \sum_{i=1}^{n} \log \pi(a_i \mid s_i)$

• Attack: set
$$a_i^{\dagger} = \pi^{\dagger}(s_i), \forall i$$

• But: most RL agents do no work like this.

6

General Training Time Attack Protocol

- Environment draws initial state $s_0 \sim \mu$, agent perceives s_0^{\dagger}
- For t = 0, 1, ...
 - Agent chooses action a_t
 - Environment receives a_t^{\dagger} , generates r_t, s_{t+1}
 - Agent perceives r_t^{\dagger} , s_{t+1}^{\dagger}

red=possible attacker manipulations

"Targeted vs. Non-Targeted"

- Targeted attack: force a specific π^{\dagger}
- Non-targeted attack: make agent suffer in value $V^{\hat{\pi}}(\mu)$
 - Conceptually still targeted: $\pi^{\dagger} \in \underline{\Pi} := \{\pi : V^{\pi}(\mu) \leq c\}$
 - Heuristic "flipping reward" attack $r_t^{\dagger} := -r_t$

• This is
$$\pi^{\dagger} \in \arg\min_{\pi \in \Pi} V^{\pi}(\mu)$$

Optionally with early stopping

+

- Poisoning: from supervised learning to RL
- Open-loop control: simulating another MDP
 - With reward poisoning r^{\dagger}
- Closed-loop control
- Forced exploration in unknown MDP
- Backdoor RL

Outline

Open-Loop Control

- Attacker knows:
 - The environment MDP $M = (S, A, R, P, \mu, \gamma \text{ or } H)$
 - Agent runs any reasonable RL algorithm
- Open-loop control:
 - not interested in agent's internal state (e.g. Q-table Q_t)
 - optimal policy under M^{\dagger}
 - Trust agent will eventually learn π^{\dagger}

• Instead, simulate another MDP $M^{\dagger} = (S, A, R^{\dagger}, P, \mu, \gamma \text{ or } H)$ such that π^{\dagger} is the

Target Policy Uniqueness

- π is an optimal policy of M^{\dagger} iff $A_{M^{\dagger}}^{\pi}(s, a) := Q_{M^{\dagger}}^{\pi}(s, a) V_{M^{\dagger}}^{\pi}(s) \le 0, \forall s, a$
- An MDP can have multiple optimal policies; Attacker wants to ensure π^\dagger being learned
- π^{\dagger} has to be the *unique* optimal policy of M^{\dagger} .
- Sufficient condition (ϵ -robust policy) for uniqueness: Fix $\epsilon > 0$, $A_{M^{\dagger}}^{\pi^{\dagger}}(s, a) \leq -\epsilon, \forall s, \forall a \neq \pi^{\dagger}(s)$

Reward Poisoning: r^{\dagger}

- Turns out any target policy π^{\dagger} is feasible with attack, if:
 - Reward manipulate is unbounded $r^{\dagger} \in \mathbb{R}$; and
 - Reward is a function of (*s*, *a*), not just *s*

Bijection between K and Q^*

•
$$R(s, a) = Q(s, a) - \gamma \mathbb{E}_{s' \sim P_{sa}} m_{a'}$$

• [Theorem (discounted MDP)] The following is a bijection $\mathbb{R}^{SA} \leftrightarrow \mathbb{R}^{SA}$

• The unique fixed point of $\mathcal{T}Q(s, a) = R(s, a) + \gamma \mathbb{E}_{s' \sim P_{sa}} \max_{a'} Q(s', a')$

 $\max_{a'} Q(s', a')$

[MZSZ]

Any Target Policy π^{\dagger} is Feasible

•
$$Q^{\dagger}(s, \pi^{\dagger}(s)) = \epsilon, \forall s$$

- $Q^{\dagger}(s, a) = 0$ for all other actions a
- Calculate $r^{\dagger}(s, a) = Q^{\dagger}(s, a) \gamma \mathbb{E}_{s' \sim P_{sa}} \max_{\alpha'} Q^{\dagger}(s', a')$

• Manually pick any Q^{\dagger} that satisfies $A_{M^{\dagger}}^{\pi^{\dagger}}(s, a) \leq -\epsilon, \forall s, \forall a \neq \pi^{\dagger}(s), e.g.$

Reward Poisoning Attack Protocol

- Environment draws initial state $s_0 \sim \mu$
- For t = 0, 1, ...
 - Agent chooses action a_t
 - Environment generates $r_t(s_t, a_t), s_{t+1}$
 - Agent perceives $r_t^{\dagger}(s, a)$ defined on previous slide, and s_{t+1}^{\dagger}

15

Remarks

- The MDP seen by agent is $M^{\dagger} = (S, A, R^{\dagger}, P, \mu, \gamma)$
- Some π^{\dagger} infeasible if rewards bounded in [0,1], or independent of a
- There are many choices of Q^{\dagger} and thus R^{\dagger} for a given π^{\dagger}
 - Should the attacker prefer some R^{\dagger} over others?

Attack Cost

- The environment MDP was $M = (S, A, R, P, \mu, \gamma)$
- Now agent sees $M^{\dagger} = (S, A, R^{\dagger}, P, \mu, \gamma)$
- less effort (i.e. attack cost)
- Close in what sense?

• Reasonable for the attacker to keep R^{\dagger} close to R for stealthiness and

Attack Cost 1: Uniform Occupancy $\frac{1}{p}$ Popular choice: $||R^{\dagger} - R||_{p} = \left(\sum_{s, s}\right)^{n}$

• Attack is a convex optimization problem:

m1r $R^{\dagger} \in \mathbb{R}^{\dagger}$

s.t.
$$A^{\pi^{\dagger}}(s, a) \leq -\epsilon, \forall s, a \neq \pi^{\dagger}(s)$$

$$\sum_{s,a} (R_{sa}^{\dagger} - R_{sa})^p \bigg)^{T}$$

$$\sum_{SA} \|R^{\dagger} - R\|_{p}$$

Attack Cost 1: Uniform Occupancy

occupancy $d^{unif}(s, a)$:

 $\mathbb{E}_{d^{unif}} | R^{\dagger}(s) |$

- state-action pairs under $d^{\pi^{\dagger}}$
 - There can be states $d^{\pi^{\dagger}}(s, \pi^{\dagger}(s))$
 - d^{unif} not appropriate if attacker cares about how often it has to attack

Pros: Convenient. Measures attack cost under a uniform state-action

$$(s,a) - R(s,a)|^p$$

• Cons: after the attack succeeds, agent will follow π^{\dagger} and keep visiting

$$P(s) \gg 0 \text{ and } R^{\dagger}(s, \pi^{\dagger}(s)) \neq R(s, \pi^{\dagger}(s))$$

Attack Cost 2: Do Not Attack Target Actions

- A variant of uniform occupancy, but do not attack on target actions
- Still convex optimization

m1 $R^{\dagger} \in \mathbb{R}$ s.t. $A^{\pi^{\dagger}}(s,$

 $R^{\dagger}(s,\pi^{\dagger}(s$

[Theorem] Attack with solution above, then both

$$\mathbb{E}\left[\frac{1}{T}\sum_{t} \mathbb{1}[a_t \neq \pi^{\dagger}(s_t)]\right] \text{ are } \tilde{O}\left(\frac{1}{T}\right).$$

$$\lim_{\mathbb{R}^{SA}} \|R^{\dagger} - R\|_{p}$$

$$a) \leq -\epsilon, \forall s, a \neq \pi^{\dagger}(s)$$

$$(s)) = R(s, \pi^{\dagger}(s)), \forall s$$

$$\mathbb{E}\left[\frac{1}{T}\sum_{t}|R^{\dagger}(s_{t},a_{t})-R(s_{t},a_{t})|\right] \text{ and }$$

[RRDZS]

• Directly minimize cumulative manipulation under π^{\dagger} :

 $\min_{R^{\dagger} \in \mathbb{R}^{SA}} \mathbb{E}_{d^{\pi^{\dagger}}} | K$

s.t.
$$A^{\pi^{\dagger}}(s, a) \leq -\epsilon, \forall s, a \neq \pi^{\dagger}(s)$$

$$R^{\dagger}(s,a) - R(s,a) \mid$$

(Similar to [ZPC])

• Implement as linear program

s.t. $A^{\pi^{\dagger}}(s, a) \leq -\epsilon, \forall s, a \neq \pi^{\dagger}(s)$

 $U^{\pi^{\dagger}}(s,a) = |R^{\dagger}(s,a) - R(s,a)| + \gamma \mathbb{E}_{s' \sim P_{s'}} U^{\pi^{\dagger}}(s',\pi^{\dagger}(s'))|$

 $\min_{R^{\dagger} \in \mathbb{R}^{SA}, U} U^{\pi^{\dagger}}(\mu)$

(Similar to [ZPC])

Attack Cost 4: d^{π^b} Behavior Occupancy

- Offline RL from a dataset $(s, a, r, s')_{1:n}$ generated from behavior policy π^b
- Attacker can modify $r_{1:n}$ before learner sees the dataset
- Model based RL: learner estimate \hat{P}, \hat{R} from dataset, then planning
- \hat{P}, \hat{R} induce estimated advantage function \hat{A} , allowing attack
- Importantly, attacker cares about small manipulation on the dataset

Attack Cost 4: d^{π^b} Behavior Occupancy

• Dataset was drawn from d^{π^b} , so approximately

 $\min_{R^{\dagger} \in \mathbb{R}^{SA}} \mathbb{E}_{d^{\pi^{b}}} |R^{\dagger}(s,a) - R(s,a)|$

s.t. $\hat{A}(s, a)$

- instances of the same (s, a) in the dataset
- In practice can relax this constraint and further lower attack cost

$$(z) \leq -\epsilon, \forall s, a \neq \pi^{\dagger}(s)$$

• This assumes the attacker wants the same $r^{\dagger} = R^{\dagger}(s, a)$ value for all

[MZSZ]

- Attacker knows environment MDP
- Attacker can change r_{t}
- Open-loop control: just simulate another MDP with R^{\dagger} , so that π^{\dagger} becomes the ϵ -robust optimal policy
- The optimal R^{\dagger} depends on which occupancy to measure attack cost

Recap

Outline

- Poisoning: from supervised learning to RL
- Open-loop control: simulating another MDP
 - With reward poisoning r^{\dagger}
 - With action poisoning a^{\dagger}
- Closed-loop control
- Forced exploration in unknown MDP
- Backdoor RL

26

Action Poisoning Attack Protocol

- Environment draws initial state $s_0 \sim \mu$
- For t = 0, 1, ...
 - Agent chooses action a_t
 - agent)
 - Environment generates r_t, s_{t+1} based on a_t^{\dagger}
 - Agent receives r_t , s_{t+1} and thought they were based on a_t

Action Poisoning Goal and Cost

- Attacker knows the environment MDP $M = (S, A, P, R, \mu, H)$
- Attacker wants to force target policy π^{\dagger}
- Attack cost = how often attacker has to change a_t to a_t^{\dagger}

Action Poisoning Algorithm

• For each state s, attacker computes the worst action under M and π^{\dagger} :

 $a_o(s)$

- Requirement on (M, π^{\dagger}) : $\forall s : \pi^{\dagger}$
- Attack algorithm: if agent $a_t = \pi^{\dagger}(s_t)$ do not attack; otherwise set $a_t^{\dagger} = a_o(s_t)$

$$f(s, a) = \arg\min_{a} Q^{\pi^{\dagger}}(s, a)$$

$$(s) \neq a_o(s)$$

[LL]

Action Poisoning Algorithm

• [Lemma] Agent thinks π^{\dagger} is the optimal policy

• Define $\Delta_{min} = \min_{s} \left(V^{\pi^{\dagger}}(s) - \min_{a} u \right)$

[Theorem] Both \mathbb{E} $\sum_{t} 1[a_t \neq \pi^{\dagger}]$

$$\inf_{a} Q^{\pi^{\dagger}}(s,a) \right)$$

$$[^{\dagger}(s_t)]$$
 and $\mathbb{E}\left[\sum_{t} 1[a_t \neq a_t^{\dagger}]\right]$ are

upperbounded by Reg/Δ_{min} , where Reg is the regret of the RL algorithm

[LL]

Recap

- Poisoning: from supervised learning to RL
- Open-loop control: simulating another MDP
 - May poison r^{\dagger} , a^{\dagger} , or transition s_{t+1}^{\dagger} [RRDZS]
- Closed-loop control
- Forced exploration in unknown MDP
- Backdoor RL

Outline

- Poisoning: from supervised learning to RL
- Open-loop control: simulating another MDP
 - May poison r^{\dagger} , a^{\dagger} , or transition s_{t+1}^{\dagger} [RRDZS]
- Closed-loop control
- Forced exploration in unknown MDP
- Backdoor RL

Open vs. Closed-Loop Control

- So far the attacker uses open-loop control:
 - Maintain an MDP M^\dagger whose unique optimal policy is π^\dagger
 - M^{\dagger} is not adaptive to agent's internal learning state (e.g. Q-table)
 - Pro: applicable to any RL learner
 - Con: can be slow in forcing π^{\dagger}
- Closed-loop control: with a whitek agent internal state

Closed-loop control: with a whitebox agent, can adapt poisoning based on

Example: Fast Adaptive Attack (FAA)

- Require: π^{\dagger} differs from π on only $k = O(\log S)$ states $s_1 \dots s_k$
- For $i = 1 \dots k$ (s_1 is the farthest from the initial states, s_k nearest)
 - Poison r^{\dagger} to force navigation policy ν_i : guides agent to s_i , and set $\pi^{\dagger}(s_i)$
- Invariance: does not change $\pi^{\dagger}(s)$
- This requires attacker to know agent's Q-table Q_t at each round

1)...
$$\pi^{\dagger}(s_{i-1})$$

Example: Fast Adaptive Attack (FAA)

- Pro: number of rounds Q_t does not induce π^{\dagger} is O(poly(S))
 - Open-loop control can be $O(e^S)$
- Cons: \bullet
 - Requires whitebox agent
 - easier to detect

• The attacks r_{r}^{\dagger} as seen from the agent are non-stationary; perhaps

Outline

- Poisoning: from supervised learning to RL
- Open-loop control: simulating another MDP
 - May poison r^{\dagger} , a^{\dagger} , or transition s_{t+1}^{\dagger} [RRDZS]
- Closed-loop control
- Forced exploration in unknown MDP
- Backdoor RL

The Issue with Unknown MDP

- Everything up to now (open/closed-loop, attack r, a, s_{t+1}) requires the attacker to know the environment MDP M
- If attacker does not know M it cannot compute A^{π^\dagger} , and thus cannot form targeted attacks
- But that is the case in many applications

Forced Exploration

- Key idea:
 - First attack to force agent to heavily explore M
 - [RZZS] uses $r_{t}^{\dagger} \sim \text{Bernoulli}(1/2, 1/2)$
 - [LL] uses LCB on Q values
 - By observing agent, attacker builds a set \mathcal{M} of plausible MDPs
 - Design attack so that π^{\dagger} is the optimal policy in all $M \in \mathcal{M}$

Outline

- Poisoning: from supervised learning to RL
- Open-loop control: simulating another MDP
 - May poison r^{\dagger} , a^{\dagger} , or transition s_{t+1}^{\dagger} [RRDZS]
- Closed-loop control
- Forced exploration in unknown MDP
- Backdoor RL

Backdoor RL

- Backdoor RL has two phases:
 - Training-time poisoning phase to hide a backdoor in π^{\dagger}
 - Test-time triggering phase to activate the backdoor in π^{\dagger}

[WJWGXS]

Training-Time Poisoning Phase

- Use any of the techniques discussed so far
- May even be easier: usually does not care about attack cost
- The target policy π^{\dagger} is special:
 - $\pi^{\dagger}(s) = \pi^{*}(s) \forall s \in \operatorname{supp}(d^{\pi^{*}})$ [normal operation]
 - $V^{\pi^{\dagger}}(s^{\dagger}) \ll V^{*}(\mu)$ on "trigger states" $s^{\dagger} \in \mathrm{Tr}$

 - Tr can be difficult to distinguish from $supp(d^{\pi^*})$ by humans

• e.g. $a^{\dagger} = \pi^{\dagger}(s^{\dagger})$ has sticker in scene) = "hard accelerate" leading to crash

Test-Time Triggering Phase

- Agent deploys π^{\dagger}
- Before triggering, by definition any $s_t \in \text{supp}(d^{\pi^*})$ is a normal state
- The attacker has the ability to change s_t to $s_t^{\dagger} \in \mathrm{Tr}$
 - E.g. by adding a special sticker to the scene
 - E.g. by controlling other agents to perform unusually actions
- From here on agent receives low value $V^{\pi^{\dagger}}(s^{\dagger}) \ll V^{*}(\mu)$

What We Covered

- Poisoning: from supervised learning to RL
- Open-loop control: simulating another MDP
 - May poison r^{\dagger} , a^{\dagger} , or transition s_{t+1}^{\dagger}
- Closed-loop control
- Forced exploration in unknown MDP
- Backdoor RL

Looking Ahead

- Commonalities of training-time RL attacks:
 - Require "enough" manipulation
 - Assume agent naively runs standard RL algorithms
- Therefore, we anticipate RL defense to break these conditions.

References

- [HZ] Huang, Zhu. Deceptive Reinforcement Learning Under Adversarial Manipulations on Cost Signals. 2019
- [LL] Liu, Lai. Provably Efficient Black-Box Action Poisoning Attacks Against Reinforcement Learning. 2021
- [MZSZ] Ma, Zhang, Sun, Zhu. Policy Poisoning in Batch Reinforcement Learning and Control. 2019
- [RRDZS] Rakhsha, Radanovic, Devidze, Zhu, Singla. Policy Teaching via Environment Poisoning: Training-time Adversarial Attacks against Reinforcement Learning. 2020
- [RZZS] Rakhsha, Zhang, Zhu, Singla. Reward Poisoning in Reinforcement Learning: Attacks Against Unknown Learners in Unknown Environments. 2021
- [WJWGXS] Wang, Javed, Wu, Guo, Xing, Song. BACKDOORL: Backdoor Attack against Competitive Reinforcement Learning. 2021
- [ZMSZ] Zhang, Ma, Singla, Zhu. Adaptive Reward-Poisoning Attacks against Reinforcement Learning. 2020
- [ZPC] Zhang, Parkes, Chen. Policy Teaching Through Reward Function Learning. 2008.