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Outline

* Poisoning: from supervised learning to RL



Target Policy

e Deterministic policyz: S —> A

e Target policy ! + 1 (the optimal policy for the underlying MDP)
» [Definition] Training time RL attack:

 Manipulate RL agent’s learning experience

e ... sothe RL agent learns il

e ... optionally minimize manipulation magnitude.



Reduction to Supervised Learning

* Training set poisoning in supervised learning:
 Manipulating training set (x, y);.,
e ... SO a supervised learner adopts predictor fT X~ Y
. For example, set y, = f'(x;), Vi € [n]

e Sameattack? X = S, Y - A, f -«



Behavior Cloning

* Works on behavior cloning agent!

° InpUt: 30> Aps 515 A1 - -

n
Behavior cloning: 7 = arg max Z log (a; | s;)

I
<o

. Attack: seta = 7'(s,), Vi
l

* But: most RL agents do no work like this.
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General Training Time Attack Protocol

« Environment draws initial state s, ~ p, agent perceives Sg

e Fort =0.1,...
» Agent chooses action a,

. . }
 Environment receives a ', generates r,, 5, |

« Agent percelves rj, S;fH

red=possible attacker manipulations



“Targeted vs. Non-Targeted”

o Targeted attack: force a specific m!

. Non-targeted attack: make agent suffer in value V*(u)
. Conceptually still targeted: 7" € I1 := {7 : V*(u) < ¢}
o Heuristic “flipping reward” attack r: = —r,

. Thisis 7' € arg min V*(u)
mell

e Optionally with early stopping



Outline

* Open-loop control: simulating another MDP

e With reward poisoning Al



Open-Loop Control

e Attacker knows:

* The environment MDP M = (S,A,R, P, u,y or H)
* Agent runs any reasonable RL algorithm

 Open-loop control:

» not interested in agent’s internal state (e.g. Q-table Q)

. Instead, simulate another MDP M ' = (S, A, RT, P, u,y or H) such that 7' is the
optimal policy under M

* Trust agent will eventually learn il
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Target Policy Uniqueness

7 is an optimal policy of M iff Ari(s,a) = Qp.(s,a) — Vi.(s) <0,Vs,a

An MDP can have multiple optimal policies; Attacker wants to ensure !
being learned

7' has to be the unique optimal policy of M

Sufficient condition (e-robust policy) for uniqueness: Fix € > 0,
AA’?T(S, a) < —e¢e,Vs,Va # ET(S)
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Reward Poisoning: al

* Turns out any target policy 'is feasible with attack, If:

 Reward manipulate is unbounded r" € R; and

» Reward is a function of (s, a), not just s
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Bijection between R and O*

SA SA

« |

e [Theorem (discounted MDP)] The following is a bijection |

. The unique fixed point of & O(s,a) = R(s,a) + y — g p_ Max O(s’,a’)

A

. R(S9 Cl) — Q(Sa CZ) —7 s'~P_ ma,X Q(S,a Cl/)

A

[MZSZ]
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Any Target Policy " is Feasible

. Manually pick any Q" that satisfies AA’?T(S, a) < —e,Vs,Va # 7'(s), e.q.

e O7(s,7'(s5)) = €,Vs

« Q7(s,a) = 0 for all other actions a

. Calculate r'(s,a) = Q'(s,a) — ¥ —gop_ Max 0'(s’,a)

A
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Reward Poisoning Attack Protocol

» Environment draws initial state s, ~ u
e Fort =0.,1,...
» Agent chooses action a,

» Environment generates r,(s,, a,), S, |

« Agent perceives r:(s, ) defined on previous slide, and SzH
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Remarks

« The MDP seen by agentis M" = (S,A,R", P P,u,y)
. Some 7' infeasible if rewards bounded in [0,1], or independent of a
 There are many choices of QT and thus R for a given !

« Should the attacker prefer some R " over others?
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Attack Cost

The environment MDP was M = (S,A,R, P, u, y)
Now agent sees M = (S,A,R", P, U, 7)

Reasonable for the attacker to keep R " close to R for stealthiness and
less effort (i.e. attack cost)

Close in what sense?
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Attack Cost 1: Uniform Occupancy

Popular choice: ||R" — R|l, = [

o Attack Is a convex optimization problem:

min ||R" — R
min_[|R' ~R|,

s.t. A”T(s, a) < —e,Vs,a # 7'(s)

[HZ]
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Attack Cost 1: Uniform Occupancy

e Pros: Convenient. Measures attack cost under a uniform state-action
occupancy d“¥ (s, a):

_dumf‘ RT(Sa CZ) T R(S9 a) ‘p

e Cons: after the attack succeeds, agent will follow 7' and keep visiting
. . f
state-action pairs under d”

e There can be states dﬂT(S, 7'(s)) > 0and R7(s, 7'(s)) # R(s, 7'(s))

e d"" not appropriate if attacker cares about how often it has to attack
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Attack Cost 2: Do Not Attack Target Actions

* A variant of uniform occupancy, but do not attack on target actions

 Still convex optimization

min [|RT =R
min [R" =],

s.t. A”T(s, a) < —e,Vs,a # n'(s)

R'(s, 7'(s)) = R(s, 7' (5)), Vs

1
‘Theorem] Attack with solution above, then both I- [? 2 ‘RT(SI, a)— R(s,a,)| | and
[

= lZl[a + 77(s,)] are@(l)
T4 f f T)

[RRDZS]
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Attack Cost 3: d”T Occupancy

e Directly minimize cumulative manipulation under '

min E,.|Ri(s.0) = R(s,a)|
=

s.t. AﬂT(S, a) < —e,Vs,a # 7'(s)

(Similar to [ZPC])
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Attack Cost 3: d”T Occupancy

 Implement as linear program

. ET
RTIEIE&,U U™ ()

s.t. A”T(s, a) < —e,Vs,a # 7'(s)

U™ (s, a) = | R'(s, @) — R(s,@) | + 7E,._p U™ (s, 7'(5")

(Similar to [ZPC])
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Attack Cost 4: d”b Behavior Occupancy

 Offline RL from a dataset (s, a, 7, S’)lzn generated from behavior policy 7’

o Attacker can modity ry.,, before learner sees the dataset

« Model based RL.: learner estimate }A’,IAQ from dataset, then planning

. }A’, R induce estimated advantage function A allowing attack

* Importantly, attacker cares about small manipulation on the dataset

[MZSZ]
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Attack Cost 4: d”b Behavior Occupancy

b
« Dataset was drawn from d” , so approximately

min Ego|R "(s,a) — R(s,a)|
<

s.t. A(s, a) < —e,Vs,a # n'(s)

. This assumes the attacker wants the same r' = RT(S, a) value for all
instances of the same (s, a) in the dataset

* In practice can relax this constraint and further lower attack cost
[MZSZ]
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Recap

Attacker knows environment MDP

Attacker can change r,

Open-loop control: just simulate another MDP with RT, so that 7'
becomes the e-robust optimal policy

The optimal R’ depends on which occupancy to measure attack cost
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Outline

 Open-loop control: simulating another MDP

 With action poisoning a’
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Action Poisoning Attack Protocol

« Environment draws initial state s, ~ u
e Fort=0.,1,...
» Agent chooses action a,

o Attacker intercepts a, and sends af to the environment instead (invisible to
agent)

« Environment generates r;, 5, | based on a:

« Agent receives r;, 5, ; and thought they were based on a,
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Action Poisoning Goal and Cost

» Attacker knows the environment MDP M = (5, A, P,R, u, H)
o Attacker wants to force target policy 7!

 Attack cost = how often attacker has to change a, to a:
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Action Poisoning Algorithm

« For each state s, attacker computes the worst action under M and '

a, (s) = arg min Q”T(S, a)

+ Requirement on (M, z"): Vs : 77 (s) # a,(s)

» Attack algorithm: if agent a, = JrJf(St) do not attack; otherwise set
a: =a,(s,)

[LL]
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Action Poisoning Algorithm

 [Lemma] Agent thinks 7' is the optimal policy

\)

, Define A . = min (VﬂT(S) — min Q% (s, a))

_ [Theorem] Both [ [Z lla, # n’f(st)]] and [E [Z la, # a;f]] are

upperbounded by Reg/A_ . . where Reg is the regret of the RL algorithm

[LL]
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Recap

* Open-loop control: simulating another MDP

« May poison r', a’, or transition S;fH [RRDZS]
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Outline

* Closed-loop control
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Open vs. Closed-Loop Control

e So far the attacker uses open-loop control:

. Maintain an MDP M" whose unigue optimal policy is !

« M is not adaptive to agent’s internal learning state (e.g. Q-table)

* Pro: applicable to any RL learner

e Con: can be slow in forcing !

* Closed-loop control: with a whitebox agent, can adapt poisoning based on
agent internal state
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Example: Fast Adaptive Attack (FAA)

. Require: ' differs from 7 on only k = O(log §) states ...,

» Fori = 1...k (s, is the farthest from the initial states, s, nearest)

. Poison r" to force navigation policy v;: guides agent to s;, and set ﬂT(Sl-)
e Invariance: does not change JZ'T(Sl). . .ﬂT(Si_l)

» This requires attacker to know agent’s Q-table (), at each round

[ZMSZ]
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Example: Fast Adaptive Attack (FAA)

» Pro: number of rounds (J, does not induce 7' is O(poly(S))

. Open-loop control can be O(e”)
e Cons:

* Requires whitebox agent

o [he attacks r: as seen from the agent are non-stationary; perhaps
easler to detect

[ZMSZ]
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Outline

* Forced exploration in unknown MDP
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The Issue with Unknown MDP

» Everything up to now (open/closed-loop, attack r, a, s, ;) requires the
attacker to know the environment MDP M

_ ]
o |f attacker does not know M it cannot compute A” , and thus cannot form
targeted attacks

 But that is the case in many applications
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Forced Exploration

o Key idea:
 First attack to force agent to heavily explore M
« [RZZS] uses rf ~ Bernoulli(1/2,1/2)
e [LL] uses LCB on Q values
» By observing agent, attacker builds a set .Z of plausible MDPs

. Design attack so that 7" is the optimal policy in all M €
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Outline

e Backdoor RL



Backdoor RL

« Backdoor RL has two phases:

e Training-time poisoning phase to hide a backdoor in Al

o Jest-time triggering phase to activate the backdoor in !

[WJWGXS]
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Training-Time Poisoning Phase

* Use any of the technigues discussed so far

 May even be easier: usually does not care about attack cost

* The target policy 7' is special:

. 7'(s) = 7*(s)Vs € supp(d®) [normal operation]

. V”T(ST) < V*(u) on “trigger states” s” € Tr
* e.g. al = ﬂT(ST has sticker in scene) = "hard accelerate” leading to crash

- Tr can be difficult to distinguish from supp(d” ) by humans
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Test-Time Triggering Phase

Agent deploys !
Before triggering, by definition any s, € supp(d”*) is a normal state

The attacker has the ability to change s, to S: e Ir

 E.g. by adding a special sticker to the scene

 E.g. by controlling other agents to perform unusually actions

From here on agent receives low value V”T(ST) <K V*(u)
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What We Covered

Poisoning: from supervised learning to RL

Open-loop control: simulating another MDP

« May poison rT, aT, or transition SL_I

Closed-loop control
Forced exploration in unknown MDP

Backdoor RL
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Looking Ahead

 Commonalities of training-time RL attacks:
* Require “enough” manipulation
 Assume agent naively runs standard RL algorithms

 Therefore, we anticipate RL defense to break these conditions.
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