Adversarial Sequential Decision Making

Goran Radanović, Adish Singla, Wen Sun, Xiaojin Zhu

International Joint Conference on AI (IJCAI) 2022

Outline

- Preliminaries
- Test-time Attacks and Defenses in RL
- Training-time Attacks in RL
- Training-time Defenses in RL
- Adversarial Attacks in Multi-agent RL
- Concluding Remarks

Test-time Attacks: Setup and Basic Ideas

Manipulating Agent's Decisions

- Agent follows a fixed learned policy π
- Adversary manipulates agent's decisions
 - altering the environment's states physically

Test-time Attacks: Setup and Basic Ideas

Manipulating Agent's Decisions

- Agent follows a fixed learned policy π
- Adversary manipulates agent's decisions
 - altering the environment's states physically
 - hacking the actions taken by the agent
 - perturbing the agent's state observations

Test-time Attacks: Setup and Basic Ideas

Perturbing State Observations via Adversarial Examples

- Image classification: label "panda" \rightarrow label "gibbon"
- Pong game: action "down" → action "noop"

[Goodfellow et al., 2015]

Problem Setup

- Perturb state observations at each time step t independently
- Consider each time step t as a multi-class classification problem: $a_t \sim \pi(\cdot | s_t)$
- Perturb state observation by crafting adversarial example: $s'_t = s_t + \eta_t$

Crafting Adversarial Example at Time Step *t*

• When using Fast Gradient Sign Method (FGSM) with ℓ_{∞} -norm, we get

$$s'_t = s_t + \epsilon \cdot \operatorname{sign}(\nabla_x J(\theta, x, y))$$

where

- θ : Parameters of trained neural network policy π_{θ}
- -x: State s_t at time step t
- y: Action weights based on the distribution $\pi_{\theta}(\cdot | s_t)$
- J: Cross-entropy loss between y and highest-weighted action in y
- $-\epsilon: \ell_{\infty}$ -norm constraint

Crafting Adversarial Examples in Pong Game

Limitations of the Uniform Attack Strategy

- Lacks crucial characteristics of sequential decision making
 - Make agent take actions different from π , i.e., $\sum_t I\{a_t \neq \operatorname{argmax}_a \pi(a|s_t)\}$
 - Incurs "attack cost" at every time step, i.e., $T\cdot\epsilon$

Test-time Attacks in Sequential Decision Making

- Adversary's goal
 - Reduce the expected total rewards of the agent
 - Make agent follow a targeted behavior
- Adversary's cost
 - Reduce the attack cost by only perturbing at critical points
 - Optimize the attack cost by long-term planning

Problem Setup

- Adversary's goal
 - Reduce the expected total rewards of the agent, i.e., reduce $\sum_t R(s_t, a_t)$
- Adversary's cost
 - Reduce the attack cost by only perturbing at critical points, i.e., reduce $\sum_t I\{s'_t \neq s_t\}$

Strategically-timed Attack: Optimization Problem

- Select a subset of time steps to attack, given by variables $b_t \in \{0, 1\}$
- Craft a sequence of pertubations for selected time steps, given by variables η_t
- We can formulate the above intuition in the following problem

$$\min_{b_0, b_1, \dots, b_{T-1}, \eta_0, \eta_1, \dots, \eta_{T-1}} \mathbb{E}\left[\sum_t R(s_t, a_t) \mid s_{t+1} \sim P(\cdot \mid s_t, a_t), a_t \sim \pi(\cdot \mid s_t'), s_0 \sim \mu(\cdot)\right]$$

$$b_t \in \{0, 1\}$$
 for all $t = 0, 1, ..., T - 1$
 $\sum_t b_t \le B$ When-to-Attack

 $s'_t = s_t + b_t \cdot \eta_t$ for all t = 0, 1, ..., T - 1 How-to-Attack

Strategically-timed Attack: When-to-Attack

- Quantify relative preference of actions for a state $c: S \to \mathbb{R}_+$
 - For policy gradient-based methods, define $c(s) = \max_{a} \pi(a|s) \min_{b} \pi(b|s)$
 - For value-based methods such as DQN, we can define c(s) using softmax over Q values
- Higher value of $c(s_t)$ indicates criticality of time step t
 - Given a threshold β (based on the budget *B*), set $b_t = 1$ if $c(s_t) \ge \beta$

Strategically-timed Attack: How-to-Attack at Critical t

- Define $a_t^{\text{most}} = \max_a \pi(a|s_t)$ and $a_t^{\text{least}} = \min_a \pi(a|s_t)$
- Craft adversarial example using "targeted" attack method
 - Set a_t^{least} as the target label
 - Find η_t under a norm constraint that increases $\pi(a_t^{\text{least}}|s_t + \eta_t)$

Strategically-timed Attack Against a Policy Playing Pong

Figure 1: Illustration of the strategically-timed attack on Pong. We use a function c to compute the preference of the agent in taking the most preferred action over the least preferred action at the current state s_t . A large preference value implies an immediate reward. In the bottom panel, we plot $c(s_t)$. Our proposed strategically-timed attack launch an attack to a deep RL agent when the preference is greater than or equal to a threshold, $c(s_t) \ge \beta$ (red-dash line). When a small perturbation is added to the observation at s_{84} (where $c(s_{84}) \ge \beta$), the agent changes its action from up to down and eventually misses the ball. But when the perturbation is added to the observation at s_{25} (where $c(s_{25}) < \beta$), there is no impact to the reward.

Experimental Results: Policies Trained with A3C and DQN Methods

[Lin et al., 2017]

Figure 3: Accumulated reward (y-axis) v.s. Portions of time steps the agent is attacked (x-axis) of Strategically-timed Attack in 5 games. The blue and green curves correspond to results of A3C and DQN, respectively. A larger reward means the deep RL agent is more robust to the strategically-timed attack.

- Comparison with Uniform attack strategy on Pong game
 - Strategically-timed attack achieves lowest reward with perturbation of only 15% time steps
 - Uniform attack achieves lowest reward with perturbation of 100% time steps

Limitations of the Strategically-timed Attack Strategy

- Adversary's goal
 - Reduce the expected total rewards of the agent
 - Make agent follow a targeted behavior
- Adversary's cost
 - Reduce the attack cost by only perturbing at critical points
 - Optimize the attack cost by long-term planning

Problem Setup

- Adversary's goal
 - Make agent follow a targeted behavior
 - Minimize the expected total rewards of the agent, i.e., minimize $\sum_t R(s_t, a_t)$
 - Maximize the expected total rewards of the adversary, i.e., maximize $\sum_t \hat{R}(s_t, a_t)$
 - Make agent reach a desired set of goal states, i.e., $s_T \in S^{adversary}$
- Adversary's cost
 - Optimize the attack cost by long-term planning

[Tretschk et al., 2018; Sun et al., 2020, Zhang et al., 2020, 2021; Sun et al., 2022]

An Example Scenario for Evasion Attack

- Adversary's goal is to minimize the expected total rewards of the agent
- The scenario shows that myopic adversary is sub-optimal

[Sun et al., 2022]

Adversary's MDP $\widehat{\boldsymbol{\mathcal{M}}}$

- Given the following
 - Agent's MDP $\mathcal{M} \coloneqq (\mathcal{S}, \mathcal{A}, P, R, \gamma, \mu)$ and agent's fixed policy π
 - Method $F(\pi, \epsilon, s)$ for crafting adversarial examples
 - ϵ is norm constraint on maximum allowed perturbation at any time step
- Adversary's MDP $\widehat{\mathcal{M}} = (\mathcal{S}, \widehat{\mathcal{A}}, \widehat{P}, \widehat{R}, \gamma, \mu)$
 - Reward function \hat{R} encodes the adversary's goal and cost
 - $\hat{R}(s_t, a_t) = -R(s_t, a_t)$ for evasion attacks [Zhang et al., 2020, 2021; Sun et al., 2022]
 - $\hat{R}(s_t, a_t) = -R(s_t, a_t) \lambda \cdot I\{s'_t \neq s_t\}$ for evasion attacks with cost considerations
 - Action space $\hat{\mathcal{A}}$ defines the "learning" aspect of adversary
 - For a given state s, $\hat{\mathcal{A}}_s \subseteq S$ is the set of permissible state pertubations [Zhang et al., 2020, 2021]
 - For a given state $s, \hat{\mathcal{A}}_s \subseteq \Delta_{\mathcal{A}}$ is the set of permissible action distributions [Sun et al., 2022]

Adversary's Action Space $\hat{\mathcal{A}}$: SA-RL vs. PA-AD Methods

- SA-RL: $\hat{\mathcal{A}}_{S} \subseteq S$ is the set of permissible state pertubations [*Zhang et al., 2020, 2021*]
- **PA-AD**: $\hat{\mathcal{A}}_{s} \subseteq \Delta_{\mathcal{A}}$ is the set of permissible action distributions [Sun et al., 2022]

Experimental Results: PA-AD vs. Baselines

[Sun et al., 2022]

	Environment	Natural Reward	ε	Random	Uniform	SA-RL	PA-AD
DQN	Boxing	96 ± 4	0.001	95 ± 4	53 ± 16	94 ± 6	19 ± 11
	Pong	21 ± 0	0.0002	21 ± 0	-10 ± 4	20 ± 1	-21 ± 0
	RoadRunner	46278 ± 4447	0.0005	44725 ± 6614	17012 ± 6243	43615 ± 7183	0 ± 0
	Freeway	34 ± 1	0.0003	34 ± 1	12 ± 1	34 ± 1	9 ± 1
	Seaquest	10650 ± 2716	0.0005	8177 ± 2962	3820 ± 1947	8152 ± 3113	2304 ± 838
	Alien	1623 ± 252	0.00075	1650 ± 381	819 ± 486	1693 ± 439	256 ± 210
	Tutankham	227 ± 29	0.00075	221 ± 65	30 ± 13	202 ± 65	0 ± 0
	Breakout	356 ± 79	0.0005	355 ± 79	86 ± 104	353 ± 79	44 ± 62
A2C	Seaquest	1752 ± 70	0.005	1752 ± 73	356 ± 153	1752 ± 71	4 ± 13
	Pong	20 ± 1	0.0005	20 ± 1	-4 ± 8	20 ± 1	-13 ± 6
	Alien	1615 ± 601	0.001	1629 ± 592	1062 ± 610	1661 ± 625	507 ± 278
	Tutankham	258 ± 53	0.001	260 ± 54	139 ± 26	260 ± 54	71 ± 47
	RoadRunner	34367 ± 6355	0.002	35851 ± 6675	9198 ± 3814	36550 ± 6848	2773 ± 3468

Test-time Attacks: Stronger Attacks?

Optimality of the Trained Adversary

- Specific threat model and assumptions
 - Adversary perturbs the state observations at test-time
 - Agent's policy is fixed
- SA-RL and PA-AD methods provide a framework to train optimal adversaries

Stronger Test-time Attacks with Backdoor Policies

- Adversary has some control over the agent's training process
 - Inject backdoors in the agent's policy, e.g., using reward poisoning [Kiourti et al., 2020]
 - Test-time attacks reduce to crafting triggerers for the backdoor policy

Test-time Defenses: Setup and Basic Ideas

Defense Against Test-time Attacks

- Data: Augment training data with adversarial manipulations
- Algorithm: Regularized objective functions for training
- Inference: Robustify inference via smoothing techniques

Test-time Defenses: Augment Training Data

Augment Training Data with Adversarial Manipulations

- Static adversary
 - For a fixed π , use an adversary against π to generate data [Pattanaik et al., 2018]

Test-time Defenses: Augment Training Data

Augment Training Data with Adversarial Manipulations

- Static adversary
 - For a fixed π , use an adversary against π to generate data [Pattanaik et al., 2018]
- Non-static adversary
 - ALTA: Alternating training with learned adversaries [Zhang et al., 2021]

Test-time Attacks: Experimental Results

Experimental Results: ATLA vs. Baselines

[Zhang et al., 2021]

Env.	State Dimension	ℓ_{∞} norm perturb- ation budget ϵ	Method	Natural Reward	Best Attack
Hopper	11	0.075	PPO (vanilla) SA-PPO (Zhang et al., 2020b) Pattanaik et al. (2018) ATLA-PPO (MLP)	3167 ± 542 3705 ± 2 2755 ± 582 2559 ± 958	636 ± 9 1076 \pm 791 291 \pm 7 976 \pm 40
Walker2d	17	0.05	PPO (vanilla) SA-PPO (Zhang et al., 2020b) Pattanaik et al. (2018) ATLA-PPO (MLP)	$\begin{array}{r} 4472\pm 635\\ 4487\pm 61\\ 4058\pm 1410\\ 3138\pm 1061\end{array}$	$\begin{array}{c} 1086{\pm}516\\ 2908{\pm}1136\\ 733{\pm}1012\\ 2213{\pm}915 \end{array}$
Ant	111	0.15	PPO (vanilla) SA-PPO (Zhang et al., 2020b) Pattanaik et al. (2018) ATLA-PPO (MLP)	$5687 \pm 758 \\ 4292 \pm 384 \\ 3469 \pm 1139 \\ 4894 \pm 123$	$\begin{array}{c} -872 \pm 436 \\ 2511 \pm 1117 \\ -672 \pm 100 \\ 33 \pm 327 \end{array}$
HalfCheetah	17	0.15	PPO (vanilla) SA-PPO (Zhang et al., 2020b) Pattanaik et al. (2018) ATLA-PPO (MLP)	$7117 \pm 98 \\ 3632 \pm 20 \\ 5241 \pm 1162 \\ 5417 \pm 49$	$\begin{array}{r} -660 \pm 218 \\ 3028 \pm 23 \\ 447 \pm 192 \\ 2170 \pm 2097 \end{array}$

Test-time Attacks: Experimental Results

Experimental Results: ATLA with LSTM Policies + Regularized Objective

[Zhang et al., 2021]

Env.	State Dimension	ℓ_{∞} norm perturb- ation budget ϵ	Method	Natural Reward	Best Attack
			PPO (vanilla)	3167±542	636±9
	11	0.075	SA-PPO (Zhang et al., 2020b)	3705 ± 2	1076 ± 791
			Pattanaik et al. (2018)	2755 ± 582	291 ± 7
Hopper			ATLA-PPO (MLP)	2559 ± 958	976 ± 40
			PPO (LSTM)	$3060{\pm}639.3$	784 ± 48
			ATLA-PPO (LSTM)	$3487{\pm}452$	1224 ± 191
			ATLA-PPO (LSTM) +SA Reg	$3291{\pm}600$	1772 ± 802
			PPO (vanilla)	4472 ± 635	1086±516
	17	0.05	SA-PPO (Zhang et al., 2020b)	4487 ± 61	2908 ± 1136
			Pattanaik et al. (2018)	$4058{\pm}1410$	733 ± 1012
Wallrord			ATLA-PPO (MLP)	3138 ± 1061	2213 ± 915
walker20			PPO (LSTM)	$2785{\pm}1121$	1259 ± 937
			ATLA-PPO (LSTM)	$3920{\pm}129$	3219 ± 1132
			ATLA-PPO (LSTM) +SA Reg	$3842{\pm}475$	3239±894
			PPO (vanilla)	5687 ± 758	-872 ± 436
	111	0.15	SA-PPO (Zhang et al., 2020b)	4292 ± 384	2511 ± 111
			Pattanaik et al. (2018)	3469 ± 1139	-672 ± 100
Ant			ATLA-PPO (MLP)	$4894{\pm}123$	33±327
Ant			PPO (LSTM)	5696 ± 165	-513 ± 104
			ATLA-PPO (LSTM)	5612 ± 130	716 ± 256
			ATLA-PPO (LSTM) +SA Reg	5359±153	3765 ± 101
	17	0.15	PPO (vanilla)	7117 ± 98	-660 ± 218
			SA-PPO (Zhang et al., 2020b)	3632 ± 20	3028 ± 23
			Pattanaik et al. (2018)	$5241{\pm}1162$	447±192
HalfChastah			ATLA-PPO (MLP)	5417 ± 49	2170 ± 2097
HairCneetan			PPO (LSTM)	5609 ± 98	-886 ± 30
			ATLA-PPO (LSTM)	5766 ± 109	2485 ± 1488
			ATLA-PPO (LSTM) +SA Reg	6157 ± 852	4806±603

Test-time Defenses: Stronger Defenses?

Stronger Defenses

- Obtaining provable guarantees of the agent's performance
- Considering more powerful threat models
 - Defense against test-time attacks with backdoor policies

References

- Goodfellow et al., Explaining and Harnessing Adversarial Examples, 2015.
- Huang et al., Adversarial Attacks on Neural Network Policies, 2017.
- Lin et al., Tactics of Adversarial Attack on Deep Reinforcement Learning Agents, 2017.
- Tretschk et al., Sequential Attacks on Agents for Long-Term Adversarial Goals, 2018.
- Sun et al., Stealthy and Efficient Adversarial Attacks against Deep Reinforcement Learning, 2020.
- Zhang et al., Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations, 2020.
- Zhang et al., Robust Reinforcement Learning on State Observations with Learned Optimal Adversary, 2021.
- Sun et al., Who Is the Strongest Enemy? Towards Optimal and Efficient Evasion Attacks in Deep RL, 2022.
- Kiourti et al., TrojDRL: Trojan Attacks on Deep Reinforcement Learning Agents, 2020.
- Pattanaik et al., Robust Deep Reinforcement Learning with Adversarial Attacks, 2018.
- Oikarinen et al., Robust Deep Reinforcement Learning through Adversarial Loss, 2021.
- Wu et al., CROP: Certifying Robust Policies for Reinforcement Learning through Functional Smoothing, 2022.

Outline

- Preliminaries
- Test-time Attacks and Defenses in RL
- Training-time Attacks in RL
- Training-time Defenses in RL
- Adversarial Attacks in Multi-agent RL
- Concluding Remarks