Adversarial Sequential Decision Making

Goran Radanovi¢, Adish Singla, Wen Sun, Xiaojin Zhu

International Joint Conference on Al (1JCAI) 2022

—
C‘V MAX PLANCK INSTITUTE

- FOR SOFTWARE SYSTEMS WISCONSIN

NNNNNNNNNNNNNNNNNNNNNNNNN

25th July, 2022

* Preliminaries

* Test-time Attacks and Defenses in RL
* Training-time Attacks in RL

* Training-time Defenses in RL

* Adversarial Attacks in Multi-agent RL

* Concluding Remarks

Test-time Attacks: Setup and Basic Ideas

Manipulating Agent’s Decisions

* Agent follows a fixed learned policy o .
. , .. Driving scenario
* Adversary manipulates agent’s decisions

— altering the environment’s states physically

Follow a fixed « Observe state s; Update state
policy 7 Se+1~P(IS¢, ar)
? Take action a;~m (- |s¢)

Receive reward R(s;, a;)

Test-time Attacks: Setup and Basic Ideas

Manipulating Agent’s Decisions
 Agent follows a fixed learned policy

e Adversary manipulates agent’s decisions

— altering the environment’s states physically
— hacking the actions taken by the agent
— perturbing the agent’s state observations

Follow a fixed - G Observe state s; Update state
policy 7 Se+1~P(IS¢, ar)

? Take action a;~m(: |s;) %

Receive reward R(s;, a;)

Test-time Attacks: Setup and Basic Ideas

Perturbing State Observations via Adversarial Examples
* |mage classification: label “panda” = label “gibbon”
* Pong game: action “down” = action “noop”

+.007 x =
z sign(VJ(0,z,y))
“panda” “nematode” action taken: down action taken: noop
57.7% confidence 8.2% confidence 99.3 % confidence original input adversarial input

[Goodfellow et al., 2015] [Huang et al., 2017]

Test-time Attacks: Uniform Attack

Problem Setup [Huang et al., 2017]
e Perturb state observations at each time step t independently

* Consider each time step t as a multi-class classification problem: a;~ (- |s;)

* Perturb state observation by crafting adversarial example: s{ = s; + 1;

Test-time Attacks: Uniform Attack

Crafting Adversarial Example at Time Step ¢ [Huang et al,, 2017]
 When using Fast Gradient Sign Method (FGSM) with £,-norm, we get

s{ = s; + € sign(V,J(0,x,7))

where
— 0: Parameters of trained neural network policy g
— Xx: State s; attime step t
— y: Action weights based on the distribution g (- |s¢)
— J: Cross-entropy loss between y and highest-weighted action in y

— €: 4 -norm constraint

Test-time Attacks: Uniform Attack

Crafting Adversarial Examples in Pong Game [Huang et al., 2017]

FGSM with €., -norm

action taken: down
original input

action taken: noop
adversarial input

+ .441 x

FGSM with £;-norm

I e argmaxVzJ (0, z,y)

action taken: up

action taken: down
original input adversarial input)

Average Return

Average Return

Test-time Attacks: Uniform Attack

Experimental Results: White-box Setting
FGSM perturbation: B /_,-norm | £5-norm ¥ £;-norm

7000 - Chopper Command, A3C

6000
5000
4000

3000

2000

1000 -

0- !
0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
€

Chopper Command, DQN

400 . :
0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
€

Average Return

Average Return

Pong, A3C

-30 -

0.000 0.001 0.002 0003 0004 0005 0006 0007 0.008
€

Pong, DON

-25. .
0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
€

Average Return

Average Return

3000 - Seaquest, A3C

2500

nN
[=]
[=]
o

1500

1000 -

500

0- .
0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
€

2500 - Seaquest, DQN

2000
1500 -
1000 -

500 -

0-
0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
€

Average Return

Average Return

[Huang et al., 2017]

Space Invaders, A3C

600
400 -

200 -

0. .
0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
€

800 Space Invaders, DQN

700 ¢
600 |
500 -
400 -
300 -

200 -

100 -

0- .
0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
€

Test-time Attacks: Uniform Attack

Experimental Results: Black-box Setting [Huang et al,, 2017]
Type of transfer: M algorithm M policy ™ none

6000 . Chopper Command, A3C, £1 norm _ 30, Pong, A3C, {1 norm) 3000 . Seaquest, A3C, 1 norm 1000 Space Invaders, A3C, {1 norm
5000 20 2500
10 ‘
g 4000 c g 2000 €
2 2 = 2
5 O 7} K
4 r o 4
@ 3000 . v 0 @ 1500 - o
o =4 o =]
e g g 8
[1] @
> = > >
< 2000 . <0 < 1000 - <
1000 — e —— : —20 - 500 -
— — — -
0. L -30 . . 0. » 0. .
0.000 0001 0002 0003 0004 0005 0006 0007 0.008 0000 0001 0002 0003 0004 0005 0006 0007 0008 0.000 0001 0002 0003 0004 0005 0006 0007 0.008 0.000 0001 0002 0003 0004 0005 0006 0007 0.008
€ € € ‘
2200 Chopper Command, DQN, ¢1 norm . 20. Pong, DQN, £1 norm . 2500 Seaquest, DQN, {1 norm _ 700 . Space Invaders, DQN, /1 norm
2000 | 15
1800 10 2000
- 1600 c ° - £
3 E S 1500 - 2
& 1400 g 0 g &
[<)] a
& 1200 g 5 @ g
@ o © 1000 -]
> >
< 1000 < 10 z z
800 - ! -15 - !
\ 500 -
\ D =
6500 ~— — | =20
400 - . -25. L 0. = 0. .
0.000 0001 0002 0003 0004 0005 0006 0007 0.008 0.000 0001 0002 0003 0004 0005 0006 0007 0.008 0000 0001 0002 0003 0004 0005 0006 0007 0,008 0.000 0001 0002 0003 0004 0005 0006 0007 0008

€ € € €

Test-time Attacks: Uniform Attack

Limitations of the Uniform Attack Strategy [Huang et al., 2017]
* Lacks crucial characteristics of sequential decision making

— Make agent take actions different from m, i.e.,),; [{a; # argmax, m(a|s;)}
— Incurs “attack cost” at every time step, i.e., T - €

Test-time Attacks in Sequential Decision Making
* Adversary’s goal

— Reduce the expected total rewards of the agent

— Make agent follow a targeted behavior
 Adversary’s cost

— Reduce the attack cost by only perturbing at critical points
— Optimize the attack cost by long-term planning

11

Test-time Attacks: Strategically-timed Attack

Problem Setup [Lin et al., 2017]

* Adversary’s goal
— Reduce the expected total rewards of the agent, i.e., reduce).+ R(s¢, a;)
* Adversary’s cost

— Reduce the attack cost by only perturbing at critical points, i.e., reduce Y. I{s{ # s;}

12

Test-time Attacks: Strategically-timed Attack

Strategically-timed Attack: Optimization Problem [Lin et al., 2017]
* Select a subset of time steps to attack, given by variables b; € {0, 1}

* Craft a sequence of pertubations for selected time steps, given by variables 71,

* We can formulate the above intuition in the following problem

min E
bo,bl,---,bT_l, No» N1,---MNT-1

z R(st, ag) | sgr1~ P |se, ag), ap~ (- |S{“)» So~u(-)
t

b; € {0, 1} forallt =0,1,.., T —1
z b, <B When-to-Attack
t

st=ss+b;-n; forallt =0,1,..,T —1 How-to-Attack

13

Test-time Attacks: Strategically-timed Attack

Strategically-timed Attack: When-to-Attack [Lin et al., 2017]

* Quantify relative preference of actions forastatec: S - R,

— For policy gradient-based methods, define c(s) = max, m(a|s) — mbin (b|s)

— For value-based methods such as DQN, we can define c(s) using softmax over Q values

* Higher value of c(s;) indicates criticality of time step t
— Given a threshold S (based on the budget B), set by = 1if c(s;) = B

14

Test-time Attacks: Strategically-timed Attack

Strategically-timed Attack: How-to-Attack at Critical t [Lin et al., 2017]
* Define a™st = max, m(als;) and al®®st = min, m(a|s;)

* Craft adversarial example using “targeted” attack method
— Set a;®3t as the target label

— Find n¢ under a norm constraint that increases n(alteaStlst +1¢)

15

Test-time Attacks: Strategically-timed Attack

Strategically-timed Attack Against a Policy Playing Pong [Lin et al., 2017]

action taken: up action taken: down

A
- —
-_—
i N
)
=

N
(6}

08

06

04

02

- - -

0.0

o
N
(%]

50 75 100 125 150 175 200

Figure 1: Illustration of the strategically-timed attack on Pong. We use a function c to compute the preference of the agent in taking the most
preferred action over the least preferred action at the current state s;. A large preference value implies an immediate reward. In the bottom
panel, we plot ¢(s¢). Our proposed strategically-timed attack launch an attack to a deep RL agent when the preference is greater than or equal
to a threshold, ¢(s;) > B (red-dash line). When a small perturbation is added to the observation at sg4 (Where c(ss4) > [3), the agent changes
its action from up to down and eventually misses the ball. But when the perturbation is added to the observation at so5 (Where c(s25) <),

there is no impact to the reward. 16

Test-time Attacks: Strategically-timed Attack

Experimental Results: Policies Trained with A3C and DQN Methods [Lin et al., 2017]
2500 4000 4500 12000
oo\ e ™ B
1500 2500 | 3000 8000\
N 2000 gggg 6000\
1000 1500 1500 | 4000
500 S e e o _(\,__/_’_/\ o] 2000 \
_38.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 8.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 ?).0 0.2 04 0.6 0.8 1.0 8.000.050.100.150.200.250.300.350.40045 %‘0 0.1 02 [B‘OT4_E5_ 0.6 0.7'0; 0.9
(a) Pong (b) Seaquest (¢) MsPacman (d) ChopperCommand (e) Qbert

Figure 3: Accumulated reward (y-axis) v.s. Portions of time steps the agent is attacked (x-axis) of Strategically-timed Attack in 5 games. The

blue and green curves correspond to results of A3C and DQN, respectively. A larger reward means the deep RL agent is more robust to the
strategically-timed attack.

 Comparison with Uniform attack strategy on Pong game
— Strategically-timed attack achieves lowest reward with perturbation of only 15% time steps
— Uniform attack achieves lowest reward with perturbation of 100% time steps

17

Test-time Attacks: Strategically-timed Attack

Limitations of the Strategically-timed Attack Strategy [Lin et al., 2017]

* Adversary’s goal
— Reduce the expected total rewards of the agent
— Make agent follow a targeted behavior
 Adversary’s cost
— Reduce the attack cost by only perturbing at critical points

— Optimize the attack cost by long-term planning

18

Test-time Attacks: Trained Adversary

Problem Setup [Tretschk et al., 2018; Sun et al., 2020,

, Zhang et al., 2020, 2021; Sun et al., 2022]
* Adversary’s goal

— Make agent follow a targeted behavior
* Minimize the expected total rewards of the agent, i.e., minimize); R(s;, a;)
* Maximize the expected total rewards of the adversary, i.e., maximize Y, R(s;, a;)
« Make agent reach a desired set of goal states, i.e., s; € Sadversary

 Adversary’s cost
— Optimize the attack cost by long-term planning

19

Test-time Attacks: Trained Adversary

An Example Scenario for Evasion Attack

* Adversary’s goal is to minimize the expected total rewards of the agent
 The scenario shows that myopic adversary is sub-optimal

myopic L&

[Sun et al., 2022]

20

Test-time Attacks: Trained Adversary

Adversary’s MDP M

* Given the following
— Agent’s MDP M = (S, A, P, R, v, 1) and agent’s fixed policy ™
— Method F(m, €, s) for crafting adversarial examples
* € is norm constraint on maximum allowed perturbation at any time step

* Adversary’s MDP M = (S, A,P,R,y,u)

— Reward function R encodes the adversary’s goal and cost
* R(s;, a;) = —R(s;, a;) for evasion attacks [Zhang et al., 2020, 2021; Sun et al., 2022]
* R(s;,a.) = —R(s;,a.) — A-1{s; # s,} for evasion attacks with cost considerations
— Action space A defines the “learning” aspect of adversary
* For agiven state s, A € S is the set of permissible state pertubations [Zhang et al., 2020, 2021]

* For a given state s, A S A is the set of permissible action distributions [Sun et al., 2022]

21

Test-time Attacks: Trained Adversary

Adversary’s Action Space A: SA-RL vs. PA-AD Methods

* SA-RL: A, C S is the set of permissible state pertubations [zhang et al., 2020, 2021]
* PA-AD: A, C A is the set of permissible action distributions [Sun et al., 2022]

Heuristics _A Heuristic Attacker: PA-AD Our Method: Policy Adversarial Actor Director:
Efficient But Non-optimal Optimal And Efficient
. Action a
State State s Environment 0\
e Director

7(3)
i/’”\h—» Victim Policy V i

SA-RL AnEnd-to-end RL Attacker (SA-RL):
Optimal But Inefficient

m —— @

et e el e et

4
4 ,
.) - -
State —T Reward r Environment <Action @ : ’
Adversary Siate '\
g +~ 7 T« The actor's task: similar to a (targeted) evasion attack in supervised learning.
i 7r(§) | _! Can be solved by optimization methods (FGSM, PGD, etc).
§\—f Victim Policy V =77 71 The director's task: minimize the total reward gained from the environment.

‘o J Can be solved by RL methods (PPO, DQN, etc).

22

Test-time Attacks: Trained Adversary

Experimental Results: PA-AD vs. Baselines [Sun et al., 2022]

. Natural .
Environment Reward € Random Uniform SA-RL PA-AD

Boxing 96 + 4 0.001 95 +4 53 £16 94 +£6 19 +£11

Pong 2140 0.0002 21+0 —10+4 04+1 —2140
RoadRunner 46278 + 4447 0.0005 44725 + 661417012 + 6243 43615 + 7183 0+0
DQN Freeway 344+1 0.0003 34+1 12+1 3441 9+1

Seaquest 10650 + 2716 0.0005 8177 +2962 3820 + 1947 8152 + 3113 2304 &+ 838
Alien 1623 £ 252 0.00075 1650 =381 819 +486 1693 =439 256 4 210
Tutankham 227 =29 0.00075 221 =65 30 £ 13 202 £ 65 0+0

Breakout 356 +79 0.0005 35579 8 +£104 35379 44+ 62
Seaquest 175270 0.005 175273 356+153 1752+ 71 4+13
A2C Pong 201 0.0006 20=x1 —4+8 20+1 —13+6
Alien 16154+ 601 0.001 1629 +£592 1062 + 610 1661 +625 507 4= 278
Tutankham 258 53 0.001 26054 139+ 26 260 + 54 71+ 47
RoadRunner 34367 + 6355 0.002 35851 + 6675 9198 + 3814 36550 + 6848 2773 + 3468 23

Test-time Attacks: Stronger Attacks?

Optimality of the Trained Adversary

* Specific threat model and assumptions
— Adversary perturbs the state observations at test-time
— Agent’s policy is fixed
 SA-RL and PA-AD methods provide a framework to train optimal adversaries

Stronger Test-time Attacks with Backdoor Policies

* Adversary has some control over the agent’s training process
— Inject backdoors in the agent’s policy, e.g., using reward poisoning [Kiourti et al., 2020]
— Test-time attacks reduce to crafting triggerers for the backdoor policy

24

Test-time Defenses: Setup and Basic Ideas

Defense Against Test-time Attacks
* Data: Augment training data with adversarial manipulations
* Algorithm: Regularized objective functions for training

* Inference: Robustify inference via smoothing techniques

-
[Pattanaik et al., 2018; [Zhang et al., 2020; [Wu et al., 2022]
Zhang et al., 2021] Oikarinen et al., 2021]

Data) | Algorithm | s | Inference

25

Test-time Defenses: Augment Training Data

Augment Training Data with Adversarial Manipulations

e Static adversary
— For a fixed m, use an adversary against m to generate data [Pattanaik et al., 2018]

policy policy '
) 4) 4

D Data ' >

26

Test-time Defenses: Augment Training Data

Augment Training Data with Adversarial Manipulations

e Static adversary
— For a fixed m, use an adversary against m to generate data [Pattanaik et al., 2018]

* Non-static adversary
— ALTA: Alternating training with learned adversaries [Zhang et al., 2021]

policy T
?

< - Data

27

Experimental Results: ATLA vs. Baselines

State /. norm perturb- Natural Best
Env. Dimension ation budget € Method Reward Attack
PPO (vanilla) 31671542 636+ 9
SA-PPO (Zhang et al., 2020b) 3705+ 2 1076+ 791
Pattanaik et al. (2018) 2755+582 291+ 7
Hopper 11 0.075 ATLA-PPO (MLP) 2559 + 958 976+ 40
PPO (vanilla) [4472 + 635 | 1086+516
SA-PPO (Zhang et al., 2020b) 4487+ 61 2908+ 1136
Pattanaik et al. (2018) 40584+ 1410 733+ 1012
Walker2d 17 0.05 ATLA-PPO (MLP) 3138 + 1061 2213+ 915
PPO (vanilla) [5687 £ 758 | -872 +436
SA-PPO (Zhang et al., 2020b) 4292+ 384 | 2511 £ 1117
Pattanaik et al. (2018) 3469+ 1139 -672+ 100
Ant 11 0.15 ATLA-PPO (MLP) 4894+ 123 33+327
PPO (vanilla) 7117+ 98 -660+ 218
SA-PPO (Zhang et al., 2020b) 3632+ 20 3028 +23
Pattanaik et al. (2018) 5241+ 1162 4474 192
HalfCheetah 17 0.15 ATLA-PPO (MLP) 5417+ 49 | 2170+ 2097

Test-time Attacks: Experimental Results

[Zhang et al., 2021]

28

Experimental Results: ATLA with LSTM Policies + Regularized Objective

State {~, norm perturb- Natural Best
Env. Dimension ation budget € Method Reward Attack
PPO (vanilla) 316715542 63619
SA-PPO (Zhang etal., 2020b) | 3705+2 | 10764791
Pattanaik et al. (2018) 27554582 201+ 7
Hoooer . 0.075 ATLA-PPO (MLP) 2559 £ 958 | 976+ 40
PP : PPO (LSTM) 3060+ 639.3 | 7844 48
ATLA-PPO (LSTM) 3487+ 452 | 1224+ 191
ATLA-PPO (LSTM) +SA Reg | 3291+ 600 | 1772+ 802
PPO (vanilla) 4472 £ 635 | 10864516
SA-PPO (Zhang et al., 2020b) | 4487+ 61 | 2908+ 1136
Pattanaik et al. (2018) 4058+ 1410 | 733+ 1012
ATLA-PPO (MLP) 3138 + 1061 | 2213+ 915
Walker2d 17 0.05 PPO (LSTM) 2785+ 1121 | 1259+ 937
ATLA-PPO (LSTM) 3920+ 129 | 3219 + 1132
ATLA-PPO (LSTM) +SA Reg | 3842+475 | 3239+ 894
PPO (vanilla) 5687 £ 758 | -872 £ 436
SA-PPO (Zhang et al., 2020b) | 4292+ 384 | 2511 + 1117
Pattanaik et al. (2018) 3469+ 1139 | -672+ 100
Aot . 015 ATLA-PPO (MLP) 4804+ 123 | 334327
: PPO (LSTM) 5696 + 165 | -513 & 104
ATLA-PPO (LSTM) 5612+ 130 | 7164+ 256
ATLA-PPO (LSTM) +SA Reg | 5359+153 | 3765+ 101
PPO (vanilla) TIT7L98 | -660L 218
SA-PPO (Zhang et al., 2020b) | 3632+20 | 3028 +23
Pattanaik et al. (2018) 5241+ 1162 | 447+ 192
ATLA-PPO (MLP) 5417+ 49 | 2170+ 2097
HalfCheetah 17 0.15 PPO (LSTM) 5609+ 98 | -886 30
ATLA-PPO (LSTM) 5766 + 109 | 2485+ 1488
ATLA-PPO (LSTM) +SA Reg | 6157+852 | 4806+ 603

Test-time Attacks: Experimental Results

[Zhang et al., 2021]

29

Test-time Defenses: Stronger Defenses?

Stronger Defenses

e Obtaining provable guarantees of the agent’s performance
* Considering more powerful threat models
— Defense against test-time attacks with backdoor policies

30

References

Goodfellow et al., Explaining and Harnessing Adversarial Examples, 2015.

Huang et al., Adversarial Attacks on Neural Network Policies, 2017.

Lin et al., Tactics of Adversarial Attack on Deep Reinforcement Learning Agents, 2017.

Tretschk et al., Sequential Attacks on Agents for Long-Term Adversarial Goals, 2018.

Sun et al., Stealthy and Efficient Adversarial Attacks against Deep Reinforcement Learning, 2020.

Zhang et al., Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations, 2020.
Zhang et al., Robust Reinforcement Learning on State Observations with Learned Optimal Adversary, 2021.
Sun et al.,, Who Is the Strongest Enemy? Towards Optimal and Efficient Evasion Attacks in Deep RL, 2022.
Kiourti et al., TrojDRL: Trojan Attacks on Deep Reinforcement Learning Agents, 2020.

Pattanaik et al., Robust Deep Reinforcement Learning with Adversarial Attacks, 2018.

Oikarinen et al., Robust Deep Reinforcement Learning through Adversarial Loss, 2021.

Wu et al., CROP: Certifying Robust Policies for Reinforcement Learning through Functional Smoothing, 2022.

31

* Preliminaries

* Test-time Attacks and Defenses in RL
* Training-time Attacks in RL

* Training-time Defenses in RL

* Adversarial Attacks in Multi-agent RL

* Concluding Remarks

32

