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Test-time Attacks: Setup and Basic Ideas

Manipulating Agent’s Decisions

* Agent follows a fixed learned policy o .
. , .. Driving scenario
* Adversary manipulates agent’s decisions

— altering the environment’s states physically

Follow a fixed « Observe state s; Update state
policy 7 Se+1~P( IS¢, ar)
? Take action a;~m (- |s¢)

Receive reward R(s;, a;)




Test-time Attacks: Setup and Basic Ideas

Manipulating Agent’s Decisions
 Agent follows a fixed learned policy

e Adversary manipulates agent’s decisions

— altering the environment’s states physically
— hacking the actions taken by the agent
— perturbing the agent’s state observations

Follow a fixed - G Observe state s; Update state
policy 7 Se+1~P( IS¢, ar)

? Take action a;~m(: |s;) %

Receive reward R(s;, a;)




Test-time Attacks: Setup and Basic Ideas

Perturbing State Observations via Adversarial Examples
* |mage classification: label “panda” = label “gibbon”
* Pong game: action “down” = action “noop”

+.007 x =
z sign(VJ(0,z,y))
“panda” “nematode” action taken: down action taken: noop
57.7% confidence 8.2% confidence 99.3 % confidence original input adversarial input

[Goodfellow et al., 2015] [Huang et al., 2017]



Test-time Attacks: Uniform Attack

Problem Setup [Huang et al., 2017]
e Perturb state observations at each time step t independently

* Consider each time step t as a multi-class classification problem: a;~ (- |s;)

* Perturb state observation by crafting adversarial example: s{ = s; + 1;



Test-time Attacks: Uniform Attack

Crafting Adversarial Example at Time Step ¢ [Huang et al,, 2017]
 When using Fast Gradient Sign Method (FGSM) with £,-norm, we get

s{ = s; + € sign(V,J(0,x,7))

where
— 0: Parameters of trained neural network policy g
— Xx: State s; attime step t
— y: Action weights based on the distribution g (- |s¢)
— J: Cross-entropy loss between y and highest-weighted action in y

— €: 4 -norm constraint



Test-time Attacks: Uniform Attack

Crafting Adversarial Examples in Pong Game [Huang et al., 2017]

FGSM with €., -norm

action taken: down
original input

action taken: noop
adversarial input

+ .441 x

FGSM with £;-norm

I e argmaxVzJ (0, z,y)

action taken: up

action taken: down
original input adversarial input )
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Test-time Attacks: Uniform Attack

Experimental Results: White-box Setting
FGSM perturbation: B /_,-norm | £5-norm ¥ £;-norm
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[Huang et al., 2017]
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Test-time Attacks: Uniform Attack

Experimental Results: Black-box Setting [Huang et al,, 2017]
Type of transfer: M algorithm M policy ™ none
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Test-time Attacks: Uniform Attack

Limitations of the Uniform Attack Strategy [Huang et al., 2017]
* Lacks crucial characteristics of sequential decision making

— Make agent take actions different from m, i.e., ),; [{a; # argmax, m(a|s;)}
— Incurs “attack cost” at every time step, i.e., T - €

Test-time Attacks in Sequential Decision Making
* Adversary’s goal

— Reduce the expected total rewards of the agent

— Make agent follow a targeted behavior
 Adversary’s cost

— Reduce the attack cost by only perturbing at critical points
— Optimize the attack cost by long-term planning

11



Test-time Attacks: Strategically-timed Attack

Problem Setup [Lin et al., 2017]

* Adversary’s goal
— Reduce the expected total rewards of the agent, i.e., reduce ).+ R(s¢, a;)
* Adversary’s cost

— Reduce the attack cost by only perturbing at critical points, i.e., reduce Y. I{s{ # s;}

12



Test-time Attacks: Strategically-timed Attack

Strategically-timed Attack: Optimization Problem [Lin et al., 2017]
* Select a subset of time steps to attack, given by variables b; € {0, 1}

* Craft a sequence of pertubations for selected time steps, given by variables 71,

* We can formulate the above intuition in the following problem

min E
bo,bl,---,bT_l, No» N1,---MNT-1

z R(st, ag) | sgr1~ P |se, ag), ap~ (- |S{“)» So~u(-)
t

b; € {0, 1} forallt =0,1,.., T —1
z b, <B When-to-Attack
t

st=ss+b;-n; forallt =0,1,..,T —1 How-to-Attack

13



Test-time Attacks: Strategically-timed Attack

Strategically-timed Attack: When-to-Attack [Lin et al., 2017]

* Quantify relative preference of actions forastatec: S - R,

— For policy gradient-based methods, define c(s) = max, m(a|s) — mbin (b|s)

— For value-based methods such as DQN, we can define c(s) using softmax over Q values

* Higher value of c(s;) indicates criticality of time step t
— Given a threshold S (based on the budget B), set by = 1if c(s;) = B

14



Test-time Attacks: Strategically-timed Attack

Strategically-timed Attack: How-to-Attack at Critical t [Lin et al., 2017]
* Define a™st = max, m(als;) and al®®st = min, m(a|s;)

* Craft adversarial example using “targeted” attack method
— Set a;®3t as the target label

— Find n¢ under a norm constraint that increases n(alteaStlst +1¢)

15



Test-time Attacks: Strategically-timed Attack

Strategically-timed Attack Against a Policy Playing Pong [Lin et al., 2017]

action taken: up action taken: down
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Figure 1: Illustration of the strategically-timed attack on Pong. We use a function c to compute the preference of the agent in taking the most
preferred action over the least preferred action at the current state s;. A large preference value implies an immediate reward. In the bottom
panel, we plot ¢(s¢). Our proposed strategically-timed attack launch an attack to a deep RL agent when the preference is greater than or equal
to a threshold, ¢(s;) > B (red-dash line). When a small perturbation is added to the observation at sg4 (Where c(ss4) > [3), the agent changes
its action from up to down and eventually misses the ball. But when the perturbation is added to the observation at so5 (Where c(s25) < ),

there is no impact to the reward. 16



Test-time Attacks: Strategically-timed Attack

Experimental Results: Policies Trained with A3C and DQN Methods [Lin et al., 2017]
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Figure 3: Accumulated reward (y-axis) v.s. Portions of time steps the agent is attacked (x-axis) of Strategically-timed Attack in 5 games. The

blue and green curves correspond to results of A3C and DQN, respectively. A larger reward means the deep RL agent is more robust to the
strategically-timed attack.

 Comparison with Uniform attack strategy on Pong game
— Strategically-timed attack achieves lowest reward with perturbation of only 15% time steps
— Uniform attack achieves lowest reward with perturbation of 100% time steps

17



Test-time Attacks: Strategically-timed Attack

Limitations of the Strategically-timed Attack Strategy [Lin et al., 2017]

* Adversary’s goal
— Reduce the expected total rewards of the agent
— Make agent follow a targeted behavior
 Adversary’s cost
— Reduce the attack cost by only perturbing at critical points

— Optimize the attack cost by long-term planning

18



Test-time Attacks: Trained Adversary

Problem Setup [Tretschk et al., 2018; Sun et al., 2020,

, Zhang et al., 2020, 2021; Sun et al., 2022]
* Adversary’s goal

— Make agent follow a targeted behavior
* Minimize the expected total rewards of the agent, i.e., minimize ); R(s;, a;)
* Maximize the expected total rewards of the adversary, i.e., maximize Y, R(s;, a;)
« Make agent reach a desired set of goal states, i.e., s; € Sadversary

 Adversary’s cost
— Optimize the attack cost by long-term planning

19



Test-time Attacks: Trained Adversary

An Example Scenario for Evasion Attack

* Adversary’s goal is to minimize the expected total rewards of the agent
 The scenario shows that myopic adversary is sub-optimal

myopic L&

[Sun et al., 2022]

20



Test-time Attacks: Trained Adversary

Adversary’s MDP M

* Given the following
— Agent’s MDP M = (S, A, P, R, v, 1) and agent’s fixed policy ™
— Method F(m, €, s) for crafting adversarial examples
* € is norm constraint on maximum allowed perturbation at any time step

* Adversary’s MDP M = (S, A,P,R,y,u)

— Reward function R encodes the adversary’s goal and cost
* R(s;, a;) = —R(s;, a;) for evasion attacks [Zhang et al., 2020, 2021; Sun et al., 2022]
* R(s;,a.) = —R(s;,a.) — A-1{s; # s,} for evasion attacks with cost considerations
— Action space A defines the “learning” aspect of adversary
* For agiven state s, A € S is the set of permissible state pertubations [Zhang et al., 2020, 2021]

* For a given state s, A S A is the set of permissible action distributions [Sun et al., 2022]
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Test-time Attacks: Trained Adversary

Adversary’s Action Space A: SA-RL vs. PA-AD Methods

* SA-RL: A, C S is the set of permissible state pertubations [zhang et al., 2020, 2021]
* PA-AD: A, C A is the set of permissible action distributions [Sun et al., 2022]

Heuristics _A Heuristic Attacker: PA-AD Our Method: Policy Adversarial Actor Director:
Efficient But Non-optimal Optimal And Efficient
. Action a
State State s Environment 0\
e Director

7(3)
i/’”\h—» Victim Policy V i

SA-RL AnEnd-to-end RL Attacker (SA-RL):
Optimal But Inefficient

m —— @

et e el e et

4
4 ,
. ) - -
State —T Reward r  Environment <Action @ : ’
Adversary Siate '\
g +~ 7 T« The actor's task: similar to a (targeted) evasion attack in supervised learning.
i 7r(§) | _! Can be solved by optimization methods (FGSM, PGD, etc).
§\—f Victim Policy V =77 71 The director's task: minimize the total reward gained from the environment.

‘o J Can be solved by RL methods (PPO, DQN, etc).
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Test-time Attacks: Trained Adversary

Experimental Results: PA-AD vs. Baselines [Sun et al., 2022]

. Natural .
Environment Reward € Random Uniform SA-RL PA-AD

Boxing 96 + 4 0.001 95 +4 53 £16 94 +£6 19 +£11

Pong 2140 0.0002 21+0  —10+4 04+1 —2140
RoadRunner 46278 + 4447 0.0005 44725 + 661417012 + 6243 43615 + 7183 0+0
DQN  Freeway 344+1 0.0003 34+1 12+1 3441 9+1

Seaquest 10650 + 2716 0.0005 8177 +2962 3820 + 1947 8152 + 3113 2304 &+ 838
Alien 1623 £ 252 0.00075 1650 =381 819 +486 1693 =439 256 4 210
Tutankham 227 =29 0.00075 221 =65 30 £ 13 202 £ 65 0+0

Breakout 356 +79 0.0005 35579 8 +£104 35379 44+ 62
Seaquest 175270 0.005 175273 356+153 1752+ 71 4+13
A2C Pong 201 0.0006 20=x1 —4+8 20+1 —13+6
Alien 16154+ 601 0.001 1629 +£592 1062 + 610 1661 +625 507 4= 278
Tutankham 258 53 0.001 26054 139+ 26 260 + 54 71+ 47
RoadRunner 34367 + 6355 0.002 35851 + 6675 9198 + 3814 36550 + 6848 2773 + 3468 23




Test-time Attacks: Stronger Attacks?

Optimality of the Trained Adversary

* Specific threat model and assumptions
— Adversary perturbs the state observations at test-time
— Agent’s policy is fixed
 SA-RL and PA-AD methods provide a framework to train optimal adversaries

Stronger Test-time Attacks with Backdoor Policies

* Adversary has some control over the agent’s training process
— Inject backdoors in the agent’s policy, e.g., using reward poisoning [Kiourti et al., 2020]
— Test-time attacks reduce to crafting triggerers for the backdoor policy

24



Test-time Defenses: Setup and Basic Ideas

Defense Against Test-time Attacks
* Data: Augment training data with adversarial manipulations
* Algorithm: Regularized objective functions for training

* Inference: Robustify inference via smoothing techniques

-
[Pattanaik et al., 2018; [Zhang et al., 2020; [Wu et al., 2022]
Zhang et al., 2021] Oikarinen et al., 2021]

Data ) | Algorithm | s | Inference

25



Test-time Defenses: Augment Training Data

Augment Training Data with Adversarial Manipulations

e Static adversary
— For a fixed m, use an adversary against m to generate data [Pattanaik et al., 2018]

policy policy '
) 4 ) 4

D Data ' >

26



Test-time Defenses: Augment Training Data

Augment Training Data with Adversarial Manipulations

e Static adversary
— For a fixed m, use an adversary against m to generate data [Pattanaik et al., 2018]

* Non-static adversary
— ALTA: Alternating training with learned adversaries [Zhang et al., 2021]

policy T
?

< - Data

27



Experimental Results: ATLA vs. Baselines

State /. norm perturb- Natural Best
Env. Dimension ation budget € Method Reward Attack
PPO (vanilla) 31671542 636+ 9
SA-PPO (Zhang et al., 2020b) 3705+ 2 1076+ 791
Pattanaik et al. (2018) 2755+582 291+ 7
Hopper 11 0.075 ATLA-PPO (MLP) 2559 + 958 976+ 40
PPO (vanilla) [ 4472 + 635 | 1086+516
SA-PPO (Zhang et al., 2020b) 4487+ 61 2908+ 1136
Pattanaik et al. (2018) 40584+ 1410 733+ 1012
Walker2d 17 0.05 ATLA-PPO (MLP) 3138 + 1061 2213+ 915
PPO (vanilla) [ 5687 £ 758 | -872 +436
SA-PPO (Zhang et al., 2020b) 4292+ 384 | 2511 £ 1117
Pattanaik et al. (2018) 3469+ 1139 -672+ 100
Ant 11 0.15 ATLA-PPO (MLP) 4894+ 123 33+327
PPO (vanilla) 7117+ 98 -660+ 218
SA-PPO (Zhang et al., 2020b) 3632+ 20 3028 +23
Pattanaik et al. (2018) 5241+ 1162 4474 192
HalfCheetah 17 0.15 ATLA-PPO (MLP) 5417+ 49 | 2170+ 2097

Test-time Attacks: Experimental Results

[Zhang et al., 2021]
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Experimental Results: ATLA with LSTM Policies + Regularized Objective

State {~, norm perturb- Natural Best
Env. Dimension ation budget € Method Reward Attack
PPO (vanilla) 316715542 63619
SA-PPO (Zhang etal., 2020b) | 3705+2 | 10764791
Pattanaik et al. (2018) 27554582 201+ 7
Hoooer . 0.075 ATLA-PPO (MLP) 2559 £ 958 | 976+ 40
PP : PPO (LSTM) 3060+ 639.3 | 7844 48
ATLA-PPO (LSTM) 3487+ 452 | 1224+ 191
ATLA-PPO (LSTM) +SA Reg | 3291+ 600 | 1772+ 802
PPO (vanilla) 4472 £ 635 | 10864516
SA-PPO (Zhang et al., 2020b) | 4487+ 61 | 2908+ 1136
Pattanaik et al. (2018) 4058+ 1410 | 733+ 1012
ATLA-PPO (MLP) 3138 + 1061 | 2213+ 915
Walker2d 17 0.05 PPO (LSTM) 2785+ 1121 | 1259+ 937
ATLA-PPO (LSTM) 3920+ 129 | 3219 + 1132
ATLA-PPO (LSTM) +SA Reg | 3842+475 | 3239+ 894
PPO (vanilla) 5687 £ 758 | -872 £ 436
SA-PPO (Zhang et al., 2020b) | 4292+ 384 | 2511 + 1117
Pattanaik et al. (2018) 3469+ 1139 | -672+ 100
Aot . 015 ATLA-PPO (MLP) 4804+ 123 | 334327
: PPO (LSTM) 5696 + 165 | -513 & 104
ATLA-PPO (LSTM) 5612+ 130 | 7164+ 256
ATLA-PPO (LSTM) +SA Reg | 5359+153 | 3765+ 101
PPO (vanilla) TIT7L98 | -660L 218
SA-PPO (Zhang et al., 2020b) | 3632+20 | 3028 +23
Pattanaik et al. (2018) 5241+ 1162 | 447+ 192
ATLA-PPO (MLP) 5417+ 49 | 2170+ 2097
HalfCheetah 17 0.15 PPO (LSTM) 5609+ 98 | -886 30
ATLA-PPO (LSTM) 5766 + 109 | 2485+ 1488
ATLA-PPO (LSTM) +SA Reg | 6157+852 | 4806+ 603

Test-time Attacks: Experimental Results

[Zhang et al., 2021]
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Test-time Defenses: Stronger Defenses?

Stronger Defenses

e Obtaining provable guarantees of the agent’s performance
* Considering more powerful threat models
— Defense against test-time attacks with backdoor policies

30
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