
Adversarial Sequential Decision Making

Goran Radanović, Adish Singla, Wen Sun, Xiaojin Zhu

25th July, 2022

International Joint Conference on AI (IJCAI) 2022

Outline

• Preliminaries

• Test-time Attacks and Defenses in RL

• Training-time Attacks in RL

• Training-time Defenses in RL

• Adversarial Attacks in Multi-agent RL

• Concluding Remarks

2

Manipulating Agent’s Decisions
• Agent follows a fixed learned policy !
• Adversary manipulates agent’s decisions

– altering the environment’s states physically

Test-time Attacks: Setup and Basic Ideas

3

Observe state "# Update state
"#$%~'() |"#, ,#)

Follow a fixed
policy !

Receive reward .("#, ,#)

Take action ,#~!() |"#)

Driving scenario

Manipulating Agent’s Decisions
• Agent follows a fixed learned policy !
• Adversary manipulates agent’s decisions

– altering the environment’s states physically
– hacking the actions taken by the agent
– perturbing the agent’s state observations

Test-time Attacks: Setup and Basic Ideas

4

Observe state "# Update state
"#$%~'() |"#, ,#)

Follow a fixed
policy !

Receive reward .("#, ,#)

Take action ,#~!() |"#)

Perturbing State Observations via Adversarial Examples
• Image classification: label “panda” à label “gibbon”
• Pong game: action “down” à action “noop”

Test-time Attacks: Setup and Basic Ideas

5

[Goodfellow et al., 2015] [Huang et al., 2017]

Problem Setup
• Perturb state observations at each time step ! independently
• Consider each time step ! as a multi-class classification problem: "#~ %(' |)#)
• Perturb state observation by crafting adversarial example:)#+ =)# + .#

Test-time Attacks: Uniform Attack

6

[Huang et al., 2017]

Crafting Adversarial Example at Time Step !
• When using Fast Gradient Sign Method (FGSM) with ℓ#-norm, we get

$%& = $% +) ⋅ sign ∇01 2, 4, 5
where
– 2: Parameters of trained neural network policy 67
– 4: State $% at time step 8
– 5: Action weights based on the distribution 67(: |$%)
– 1: Cross-entropy loss between 5 and highest-weighted action in 5
–): ℓ#-norm constraint

Test-time Attacks: Uniform Attack

7

[Huang et al., 2017]

Crafting Adversarial Examples in Pong Game

Test-time Attacks: Uniform Attack

8

FGSM with ℓ"-norm

FGSM with ℓ#-norm

[Huang et al., 2017]

Experimental Results: White-box Setting

Test-time Attacks: Uniform Attack

9

[Huang et al., 2017]

Experimental Results: Black-box Setting

Test-time Attacks: Uniform Attack

10

[Huang et al., 2017]

Limitations of the Uniform Attack Strategy
• Lacks crucial characteristics of sequential decision making

– Make agent take actions different from !, i.e., ∑# I %# ≠ argmax, ! % -#
– Incurs “attack cost” at every time step, i.e., . ⋅ 0

Test-time Attacks in Sequential Decision Making
• Adversary’s goal

– Reduce the expected total rewards of the agent
– Make agent follow a targeted behavior

• Adversary’s cost
– Reduce the attack cost by only perturbing at critical points
– Optimize the attack cost by long-term planning

Test-time Attacks: Uniform Attack

11

∑

[Huang et al., 2017]

Problem Setup
• Adversary’s goal

– Reduce the expected total rewards of the agent, i.e., reduce ∑" #(%", '")
• Adversary’s cost

– Reduce the attack cost by only perturbing at critical points, i.e., reduce ∑" I %"* ≠ %"

Test-time Attacks: Strategically-timed Attack

12

[Lin et al., 2017]

Strategically-timed Attack: Optimization Problem
• Select a subset of time steps to attack, given by variables !" ∈ 0, 1
• Craft a sequence of pertubations for selected time steps, given by variables '"
• We can formulate the above intuition in the following problem

Test-time Attacks: Strategically-timed Attack

13

min
+,,+-,…,+/0-, 1,, 1-,…,1/0-

2 3
"

4(6", 7") | 6":;~ = ⋅ |6", 7" , 7"~ ? ⋅ |6"
@ , 6A~B(⋅)

6"
@ = 6" + !" ⋅ '" for all J = 0, 1, … , K − 1

!" ∈ 0, 1 for all J = 0, 1, … , K − 1

3
"

!" ≤ N When-to-Attack

How-to-Attack

[Lin et al., 2017]

Strategically-timed Attack: When-to-Attack
• Quantify relative preference of actions for a state !: # → ℝ&

– For policy gradient-based methods, define ! ' = max, - . ' − min2 - 3 '
– For value-based methods such as DQN, we can define ! ' using softmax over 4 values

• Higher value of !('6) indicates criticality of time step 8
– Given a threshold 9 (based on the budget :), set 36 = 1 if ! '6 ≥ 9

Test-time Attacks: Strategically-timed Attack

14

[Lin et al., 2017]

Strategically-timed Attack: How-to-Attack at Critical !
• Define "#$%&' = max, - " .# and "#/01&' = min, - " .#

• Craft adversarial example using “targeted” attack method
– Set "#/01&' as the target label
– Find 4# under a norm constraint that increases - a'/01&'|.# + 4#

Test-time Attacks: Strategically-timed Attack

15

[Lin et al., 2017]

Strategically-timed Attack Against a Policy Playing Pong

Test-time Attacks: Strategically-timed Attack

16

[Lin et al., 2017]

Experimental Results: Policies Trained with A3C and DQN Methods

• Comparison with Uniform attack strategy on Pong game
– Strategically-timed attack achieves lowest reward with perturbation of only 15% time steps
– Uniform attack achieves lowest reward with perturbation of 100% time steps

Test-time Attacks: Strategically-timed Attack

17

[Lin et al., 2017]

Limitations of the Strategically-timed Attack Strategy
• Adversary’s goal

– Reduce the expected total rewards of the agent
– Make agent follow a targeted behavior

• Adversary’s cost
– Reduce the attack cost by only perturbing at critical points
– Optimize the attack cost by long-term planning

Test-time Attacks: Strategically-timed Attack

18

[Lin et al., 2017]

Problem Setup
• Adversary’s goal

– Make agent follow a targeted behavior
• Minimize the expected total rewards of the agent, i.e., minimize ∑' ((*', ,')
• Maximize the expected total rewards of the adversary, i.e., maximize ∑' 0((*', ,')
• Make agent reach a desired set of goal states, i.e., *1 ∈ 345678948:

• Adversary’s cost
– Optimize the attack cost by long-term planning

Test-time Attacks: Trained Adversary

19

[Tretschk et al., 2018; Sun et al., 2020,
Zhang et al., 2020, 2021; Sun et al., 2022]

An Example Scenario for Evasion Attack
• Adversary’s goal is to minimize the expected total rewards of the agent
• The scenario shows that myopic adversary is sub-optimal

Test-time Attacks: Trained Adversary

20

[Sun et al., 2022]

Adversary’s MDP !"
• Given the following

– Agent’s MDP ℳ ≔ %,', (,), *, + and agent’s fixed policy ,
– Method -(,, /, 0) for crafting adversarial examples

• / is norm constraint on maximum allowed perturbation at any time step

• Adversary’s MDP 2ℳ = %, 4', 5(, 5), *, +
– Reward function 5) encodes the adversary’s goal and cost

• 5) 06, 76 = −)(06, 76) for evasion attacks [Zhang et al., 2020, 2021; Sun et al., 2022]
• 5) 06, 76 = −) 06, 76 − 9 ⋅ I 06< ≠ 06 for evasion attacks with cost considerations

– Action space 4' defines the “learning” aspect of adversary
• For a given state 0, 4'> ⊆ % is the set of permissible state pertubations [Zhang et al., 2020, 2021]
• For a given state 0, 4'> ⊆ Δ' is the set of permissible action distributions [Sun et al., 2022]

Test-time Attacks: Trained Adversary

21

Adversary’s Action Space !": SA-RL vs. PA-AD Methods
• SA-RL: !"# ⊆ % is the set of permissible state pertubations
• PA-AD: !"# ⊆ Δ" is the set of permissible action distributions

Test-time Attacks: Trained Adversary

22

[Sun et al., 2022]

[Zhang et al., 2020, 2021]

PA-AD

SA-RL

Heuristics

Experimental Results: PA-AD vs. Baselines

Test-time Attacks: Trained Adversary

23

[Sun et al., 2022]

Uniform

Optimality of the Trained Adversary
• Specific threat model and assumptions

– Adversary perturbs the state observations at test-time
– Agent’s policy is fixed

• SA-RL and PA-AD methods provide a framework to train optimal adversaries

Stronger Test-time Attacks with Backdoor Policies
• Adversary has some control over the agent’s training process

– Inject backdoors in the agent’s policy, e.g., using reward poisoning [Kiourti et al., 2020]
– Test-time attacks reduce to crafting triggerers for the backdoor policy

Test-time Attacks: Stronger Attacks?

24

Defense Against Test-time Attacks
• Data: Augment training data with adversarial manipulations
• Algorithm: Regularized objective functions for training
• Inference: Robustify inference via smoothing techniques

Test-time Defenses: Setup and Basic Ideas

25

Algorithm InferenceData

[Pattanaik et al., 2018;
Zhang et al., 2021]

[Zhang et al., 2020;
Oikarinen et al., 2021]

[Wu et al., 2022]

Augment Training Data with Adversarial Manipulations
• Static adversary

– For a fixed !, use an adversary against ! to generate data

Test-time Defenses: Augment Training Data

26

policy !

Data

policy !′

[Pattanaik et al., 2018]

Augment Training Data with Adversarial Manipulations
• Static adversary

– For a fixed !, use an adversary against ! to generate data
• Non-static adversary

– ALTA: Alternating training with learned adversaries

Test-time Defenses: Augment Training Data

27

[Pattanaik et al., 2018]

[Zhang et al., 2021]

policy !

Data

Experimental Results: ATLA vs. Baselines

Test-time Attacks: Experimental Results

28

[Zhang et al., 2021]

Experimental Results: ATLA with LSTM Policies + Regularized Objective

Test-time Attacks: Experimental Results

29

[Zhang et al., 2021]

Stronger Defenses
• Obtaining provable guarantees of the agent’s performance
• Considering more powerful threat models

– Defense against test-time attacks with backdoor policies

Test-time Defenses: Stronger Defenses?

30

References
• Goodfellow et al., Explaining and Harnessing Adversarial Examples, 2015.
• Huang et al., Adversarial Attacks on Neural Network Policies, 2017.
• Lin et al., Tactics of Adversarial Attack on Deep Reinforcement Learning Agents, 2017.
• Tretschk et al., Sequential Attacks on Agents for Long-Term Adversarial Goals, 2018.
• Sun et al., Stealthy and Efficient Adversarial Attacks against Deep Reinforcement Learning, 2020.
• Zhang et al., Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations, 2020.
• Zhang et al., Robust Reinforcement Learning on State Observations with Learned Optimal Adversary, 2021.
• Sun et al., Who Is the Strongest Enemy? Towards Optimal and Efficient Evasion Attacks in Deep RL, 2022.
• Kiourti et al., TrojDRL: Trojan Attacks on Deep Reinforcement Learning Agents, 2020.
• Pattanaik et al., Robust Deep Reinforcement Learning with Adversarial Attacks, 2018.
• Oikarinen et al., Robust Deep Reinforcement Learning through Adversarial Loss, 2021.
• Wu et al., CROP: Certifying Robust Policies for Reinforcement Learning through Functional Smoothing, 2022.

31

Outline

• Preliminaries

• Test-time Attacks and Defenses in RL

• Training-time Attacks in RL

• Training-time Defenses in RL

• Adversarial Attacks in Multi-agent RL

• Concluding Remarks

32

