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Adversarial Attacks on AI
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[Goodfellow et al., 2015]
[Sharif et al., 2016]



Adversarial Attacks on ML
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Algorithm PredictionDataset

Learning to predict

AlgorithmAttacker PredictionDataset

Influencing prediction



Accounting for Decisions
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Attacks on Driving Systems



Accounting for Decisions
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Attacks on Conversational AIAttacks on Driving Systems



From Prediction to Decisions
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Algorithm PredictionDataset

Learning to decide

Decision

Credit to Dylan Foster for ML vs. Decision Making distinction. See link.  

AlgorithmAttackerDataset

Influencing decision

Decision

Prediction

https://simons.berkeley.edu/talks/reinforcement-learning-part-i


Trustworthy Decision Making
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Reinforcement Learning

Algorithmic foundations

Scalable algorithms

Early works

2010s-2020s

Trustworthy decision 
making

Next grand 
challenge!

Author: Dllu

deepmind.com

[Vynials et al., 2019] [Baker et al., 2020]

[Tesauro, 1995]



Sequential Decision Making
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Take action

Observe state

Receive reward

Agent 
Environment

Follow policy
! Model ℳ

Maximize performance

Update state
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Adversarial Sequential Decision Making
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Attack Modalities: Test-Time Attacks
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Take action

Observe state

Receive reward

Environment
Follow a learned policy

Update state

E.g. manipulate 
observations to 
minimize performance

Example



Attack Modalities: Training-Time Attacks
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Take action

Observe state

Receive reward

Environment

Update state

Example

Learn a policy

E.g., manipulate rewards 
& transitions to force 
a target policy



Defenses Against Adversarial Attacks
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Environment
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• Concluding Remarks
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Markov Decision Processes
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!"~$(& |(")
Observe ("

Receive *((", !")

MDP ℳ = .,/, 0, *, 1, 2

• 0: .×/ → Δ(.)
• *: .×/ → ℝ
• 1 ∈ 0,1
• 2 ∈ Δ .

• Stochastic stationary policy $: . → Δ(/)

Update state
(";<~0(& |(", !")

(=~2(&)

maxAB C
"D=

E
|1"F< & *((", !") (=~2, !"~$(& |("), (";< ~0(& |(", !")



Value Functions
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!" # = % &
'()

*
|,'-. / 0(#', 3') #) = #, 5

Value function !" ∶ 7 → ℝ



Value Functions
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!" # = % &
'()

*
|,'-. / 0(#', 3') #) = #, 5

Value function !" ∶ 7 → ℝ

Note that the optimization problem is …

max"!" = =&
>
=(#) / !" #



Value Functions
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!" # = % &
'()

*
|,'-. / 0(#', 3') #) = #, 5

Value function !" ∶ 7 → ℝ

How do we find !"?

!" # = 0 #, 5 + , /&
;<
= #< #, 5 / !" (#′)

Bellman equation



Value Functions
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!" # = % &
'()

*
|,'-. / 0(#', 3') #) = #, 5

Value function !" ∶ 7 → ℝ

State-action value function :" ∶ 7×< → ℝ

:" #, 3 = % &
'()

*
|,'-. / 0(#', 3') #) = #, 3) = 3, 5



Value Functions
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!" # = % &
'()

*
|,'-. / 0(#', 3') #) = #, 5

Value function !" ∶ 7 → ℝ

State-action value function :" ∶ 7×< → ℝ

:" #, 3 = % &
'()

*
|,'-. / 0(#', 3') #) = #, 3) = 3, 5

Advantage function:
=" #, 3 = :" #, 3 − !" #



Value Functions
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!" #, % = ' #, % + )*
+,
- #, #, % max1, "(#,, %′)

Bellman optimality operator

If "∗ satisfies !"∗ = "∗, then

6∗ % # = 1.0 s.t. % ∈ argmax1= "∗(#, %,)

is optimal.



Finding Optimal Policy
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• Planning in MDPs: ! and " are given

– Policy iteration: policy evaluation + policy improvement

– Q-value iteration: calculate #∗

• Reinforcement learning 

– Policy gradient

– Q-learning: learn #∗



Policy Gradient
• Parametric policy !"($|&)

• Gradient update rule: ()*+ = () + |. ⋅ ∇"123 4 "5"6
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Policy Gradient
• Parametric policy !"($|&)

• Gradient update rule: ()*+ = () + |. ⋅ ∇"123 4 "5"6

• Policy gradient theorem:
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∇"123 4 =
1

1 − 9
: ;<,>~@A

B3 C23(&, $) : ∇" log !"($|&)

GH
23 &, $ = (1 − 9) : ; I

J5K

L

|9JM+ : N[&J = &, $J = $] 4, !
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