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Adversarial Attacks on ML

Learning to predict
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Accounting for Decisions

Attacks on Driving Systems




Accounting for Decisions

Attacks on Driving Systems

Attacks on Conversational Al

€he New Hork Eimes

Microsoft Created a Twitter Bot to
Learn From Users. It Quickly Became
a Racist Jerk.

] Givethisarticle A [

TWEETS FOLLOWERS

96.1K 48.4K

Tweets Tweets & replies

TayTweets &
@TayandYou Pinned Tweet



From Prediction to Decisions

Learning to decide
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Credit to Dylan Foster for ML vs. Decision Making distinction. See link.
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https://simons.berkeley.edu/talks/reinforcement-learning-part-i

Trustworthy Decision Making
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Sequential Decision Making
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Adversarial Sequential Decision Making
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Attack Modalities: Test-Time Attacks
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Attack Modalities: Training-Time Attacks
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Defenses Against Adversarial Attacks
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Markov Decision Processes

MDP M = (S,A,P,R,y, 1)

. ) Observe s;
e P:SXA - A(S) 8 ag~m(- |sg)
e R:SXA - R >
* Yy €[0,1) - Receive R(s¢, ay)
* LEAS) ) Update state
St+1~P (- [st, ar)
* Stochastic stationary policy m: § = A(A) So~u()

0.0)

max, [ [zyt_l ' R(S¢, a)l so~p a~1 (- S¢), Ser1 ~P (- ISe, ar)
t=0
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Value Functions

Value function V" : § - R

Ve (s) = E lZyt‘l R(s¢,ap)| sg = s, n]

t=0

16



Value Functions

Value function V" : § - R

Ve (s) = E lZyt‘l R(s¢,ap)| sg = s, n]

t=0

Note that the optimization problemis ...

max, V™ () = Zsu@ VT (s)
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Value Functions

Value function V" : § - R

Ve (s) = E lZyt‘l R(s¢,ap)| sg = s, n]

t=0
How do we find VT?

VEi(s) =R (s,m) +y: z P(s'|s,m) - V™ (s")

Bellman equation
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Value Functions

Value function V" : § - R

Ve (s) = E lZyt‘l R(s¢,ap)| sg = s, n]

t=0
State-action value function Q™ : SXA — R

Qn(sx Cl) = [E [Z)/t_l . R(St, at)l So = S,Qp9 = Q, T[]

t=0
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Value Functions

Value function V" : § - R
Ve(s) = E lzyt_l *R(s¢,ae)|sg = s, ”]
t=0

Advantage function:
A" (s,a) = Q"(s,a) — V™ (s)

4

Qn(sx Cl) = [E [Z)/t_l . R(St, at)l So = S,Qp9 = Q, T[]

t=0

State-action value function Q™ : SXA — R
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Value Functions

Bellman optimality operator

(TQ)(s,@) = R(s,a) +7 ) P(s'ls,a) max Q(s',a)

If Q" satisfies Q™ = Q7, then
n*(als) = 1.0 s.t. a € argmax, Q*(s,a’)

is optimal.
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Finding Optimal Policy

* Planning in MDPs: P and R are given

— Policy iteration: policy evaluation + policy improvement

— Q-value iteration: calculate Q*

* Reinforcement learning
— Policy gradient

— Q-learning: learn Q"
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Policy Gradient

* Parametric policy mg(als)

* Gradient update rule: Oi.; =6 +1-VoV™(u)|g=p,
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Policy Gradient

* Parametric policy mg(als)
* Gradient update rule: Oi.; =6 +1-VoV™(u)|g=p,

* Policy gradient theorem:

VoV (u) = E g |[A™0 (s,a) - Vg logmg(als)]

1—vy . s,a~d,

Cmm———

dy’(s,a) = (1-7) [Zy s =s,a, = ]l g,

t=0
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